【題目】如圖,正方形ABCD的邊長為2,點E、F分別是CD、BC的中點,AE與DF交于點P,連接CP,則CP=_____.
【答案】
【解析】
由△ADE≌△DCF可導出四邊形CEPF對角互補,而CE=CF,于是將△CEP繞C點逆時針旋轉90°至△CFG,可得△CPG是等腰直角三角形,從而PG=PF+FG=PF+PE=CP,求出PE和PF的長度即可求出PC的長度.
解:如圖,作CG⊥CP交DF的延長線于G.
則∠PCF+∠GCF=∠PCG=90°,
∵四邊形ABCD是邊長為2的正方形,
∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,
∵E、F分別為CD、BC中點,
∴DE=CE=CF=BF=1,
∴AE=DF=,
∴DP==
,
∴PE=,PF=
,
在△ADE和△DCF中:
∴△ADE≌△DCF(SAS),
∴∠AED=∠DFC,
∴∠CEP=∠CFG,
∵∠ECP+∠PCF=∠DCB=90°,
∴∠ECP=∠FCG,
在△ECP和△FCG中:
∴△ECP≌△FCG(ASA),
∴CP=CG,EP=FG,
∴△PCG為等腰直角三角形,
∴PG=PF+FG=PF+PE==
CP,
∴CP=.
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AB=4.作BM平分∠ABC交AC于點M,點D為射線BM上一點,以點B為旋轉中心將線段BD逆時針旋轉60°得到線段BE,連接DE.交射線BA于點F,連接AD、AE.當以A、D、M為頂點的三角形與△AEF全等時,DE的長為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年,《中國詩詞大會》、《朗讀者》,《經典詠流傳》、《國家寶藏》等文化類節目相繼走紅,被人們稱為“清流綜藝”,匯文初中文學社想了解全校學生對這四個節目的喜愛情況,隨機抽取了部分學生進行調查統計,要求每名學生選出一個自己最喜愛的節目,并將調查結果給制成如下統計圖(其中《中國詩詞大會》,《朗讀者》,《經典詠流傳》,《國家寶藏》分別用A、B、C、D表示),請你解答下列問題:
(1)本次調查的學生人數是 人:
(2)請把條形統計圖補充完整.
(3)在扇形統計圖中,B對應的圓心角的度數是 .
(4)已知匯文初中共有5000名學生,請根據樣本估計全校最喜愛《國家寶藏》的人數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:
①當x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正確的結論是( )
A.①③④ B.①②③ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小螞蟻在9×9的小方格上沿著網格線運動(每小格邊長為1),一只螞蟻在C處找到食物后,要通知A、B、D、E處的其他小螞蟻,我們把它的行動規定:向上或向右為正,向下或向左為負。如果從C到D記為:C→D(+2,-3)(第一個數表示左、右方向,第二個數表示上、下方向),那么;
(1)C→B( 。,C→E( 。,D→ (-4,-3),D→ ( ,+3);
(2)若這只小螞蟻的行走路線為C→E→D→B→A→C,請你計算小螞蟻走過的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文具店準備購進A、B兩種型號的書包共50個進行銷售,兩種書包的進價、售價如下表所示:
書包型號 | 進價(元/個) | 售價(元/個) |
A型 | 200 | 300 |
B型 | 100 | 150 |
購進這50個書包的總費用不超過7300元,且購進B型書包的個數不大于A型書包個數的.
(1)該文具店有哪幾種進貨方案?
(2)若該文具店購進的50個書包全部售完,則該文具店采用哪種進貨方案,才能獲得最大利潤?最大利潤是多少?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】超速行駛是引發交通事故的主要原因之一.上周末,小明和三位同學嘗試用自己所學的知識檢測車速.如圖,觀測點設在A處,離益陽大道的距離(AC)為30米.這時,一輛小轎車由西向東勻速行駛,測得此車從B處行駛到C處所用的時間為8秒,∠BAC=75°.
(1)求B、C兩點的距離;
(2)請判斷此車是否超過了益陽大道60千米/小時的限制速度?
(計算時距離精確到1米,參考數據:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732, ≈1.732,60千米/小時≈16.7米/秒)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直角坐標系中,已知點P(-2,-1),點T(t,0)是x軸上的一個動點.
(1)求點P關于原點的對稱點P′的坐標;
(2)當t取何值時,△P′TO是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A、B、C、D在數軸上的位置如圖1所示,已知AB=3,BC=2,CD=4.
(1)若點C為原點,則點A表示的數是 ;
(2)若點A、B、C、D分別表示有理數a,b,c,d,則|a﹣c|+|d﹣b|﹣|a﹣d|= ;
(3)如圖2,點P、Q分別從A、D兩點同時出發,點P沿線段AB以每秒1個單位長度的速度向右運動,到達B點后立即按原速折返;點Q沿線段CD以每秒2個單位長度的速度向左運動,到達C點后立即按原速折返.當P、Q中的某點回到出發點時,兩點同時停止運動.
①當點停止運動時,求點P、Q之間的距離;
②設運動時間為t(單位:秒),則t為何值時,PQ=5?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com