(1)證明:∵∠BCD=∠ECF=90°,∴∠BCE=∠DCF,
∵BC=DC,EC=CF,∴△BCE≌△DCF,
∴∠EBC=∠FDC,
∵BC=DC,∠BCD=90°,∴∠DBC=∠BDC=45°,
∴∠FDC=45°,∴∠FDB=90°,
∴BD⊥DF;
(2)解:四邊形DECF是正方形.
∵BC
2=DE•DB,BC=DC,∴DC
2=DE•DB,∴

,
∵∠CDE=∠BDC,∴△CDE∽△BDC,
∴∠DEC=∠DCB=90°,
∵∠FDE=∠ECF=90°,∴四邊形DECF是矩形,
∵CE=CF,∴四邊形DECF是正方形.
分析:(1)利用互余關系證明∠BCE=∠DCF,又有BC=DC,EC=CF,可證△BCE≌△DCF,得出∠EBC=∠FDC,由已知可知△BCD為等腰直角三角形,故有∠BDC=∠EBC=∠FDC=45°,可證∠FDB=90°,證明BD⊥DF;
(2)四邊形DECF是正方形.由BC
2=DE•DB及BC=DC,得DC
2=DE•DB,轉化為比例式,利用公共角∠CDE=∠BDC,證明△CDE∽△BDC,則有∠DEC=∠DCB=90°,判斷四邊形DECF是矩形,結合條件CE=CF,可證四邊形DECF是正方形.
點評:本題考查了相似三角形的判定與性質,全等三角形的判定與性質,正方形的判定.關鍵是利用已知條件證明等腰直角三角形,全等三角形,判斷垂直關系,利用條件證明相似三角形,判斷直角,矩形及正方形.