【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中,C點坐標為(1,2),
(1)寫出點A、B的坐標:A( , )、B( , )
(2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個頂點坐標A′( 、 )、B′( 、 )、C′ 、 )
(4)求△ABC的面積.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數y=(x>0)的圖象經過線段OC的中點A,交DC于點E,交BC于點F.設直線EF的解析式為y=k2x+b.
(1)求反比例函數和直線EF的解析式;
(2)求△OEF的面積;
(3)請結合圖象直接寫出不等式k2x+b﹣>0的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)用方程解答下列問題
(1)一個角的余角比它的補角的還少15°,求這個角的度數.
(2)幾個人共同搬運一批貨物,如果每人搬運8箱貨物,則剩下7箱貨物未搬運;如果每人搬運12箱貨物,則缺13箱貨物,求參與搬運貨物的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:有兩條邊長的比值為的直角三角形叫“潛力三角形”.如圖,在△ABC中,∠B=90°,D是AB的中點,E是CD的中點,DF∥AE交BC于點F.
(1)設“潛力三角形”較短直角邊長為a,斜邊長為c,請你直接寫出的值為 ;
(2)若∠AED=∠DCB,求證:△BDF是“潛力三角形”;
(3)若△BDF是“潛力三角形”,且BF=1,求線段AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(0,4),B(3,0),線段AB平移后對應的線段為CD,點C在x軸的負半軸上,B、C兩點之間的距離為8.
(1)求點D的坐標;
(2)如圖(1),求△ACD的面積;
(3)如圖(2),∠OAB與∠OCD的角平分線相交于點M,探求∠AMC的度數并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點E是邊AC上一點,線段BE垂直于∠BAC的平分線于點D,點M為邊BC的中點,連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】工匠制作某種金屬工具要進行材料煅燒和鍛造兩個工序,即需要將材料燒到800℃,然后停止煅燒進行鍛造操作,經過8min時,材料溫度降為600℃.煅燒時溫度y(℃)與時間x(min)成一次函數關系;鍛造時,溫度y(℃)與時間x(min)成反比例函數關系(如圖).已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時y與x的函數關系式,并且寫出自變量x的取值范圍;
(2)根據工藝要求,當材料溫度低于480℃時,須停止操作.那么鍛造的操作時間有多長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某大樓的頂部有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1∶,AB=10米,AE=15米(i=1∶
是指坡面的鉛直高度BH與水平長度AH的比).
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結果精確到0.1米.參考數據:≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com