【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點C.
(1)若點A(0,6),N(0,2),∠ABN=30°,求點B的坐標;
(2)若D為線段NB的中點,求證:直線CD是⊙M的切線.
【答案】(1) B(,2).(2)證明見解析.
【解析】
試題分析:(1)在Rt△ABN中,求出AN、AB即可解決問題;
(2)連接MC,NC.只要證明∠MCD=90°即可
試題解析:(1)∵A的坐標為(0,6),N(0,2),
∴AN=4,
∵∠ABN=30°,∠ANB=90°,
∴AB=2AN=8,
∴由勾股定理可知:NB=,
∴B(,2).
(2)連接MC,NC
∵AN是⊙M的直徑,
∴∠ACN=90°,
∴∠NCB=90°,
在Rt△NCB中,D為NB的中點,
∴CD=NB=ND,
∴∠CND=∠NCD,
∵MC=MN,
∴∠MCN=∠MNC,
∵∠MNC+∠CND=90°,
∴∠MCN+∠NCD=90°,
即MC⊥CD.
∴直線CD是⊙M的切線.
科目:初中數學 來源: 題型:
【題目】在△ABC中,BC=10,AB的垂直平分線與AC的垂直平分線分別交BC于點D、E,且DE=4,則AD+AE的長度為________________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=kx+b的圖象分別交x軸、y軸于A、B兩點,與反比例函數 的圖象交于C、D兩點,DE⊥x軸于點E.已知C點的坐標是(6,﹣1),DE=3.
(1)求反比例函數與一次函數的解析式.
(2)根據圖象直接回答:當x為何值時,一次函數的值大于反比例函數的值?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=3,BC=5,E是邊CD的中點,連結BE并延長與AD的延長線相交于點F.
(1)求證:四邊形BDFC是平行四邊形.
(2)若BD=BC,求四邊形BDFC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com