日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
問題:如圖,在正方形ABCD和正方形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.試探究PG與PC的位置關系及
PG
PC
的值.小聰同學的思路是:延長GP精英家教網交DC于點H,構造全等三角形,經過推理使問題得到解決.
請你參考小聰同學的思路,探究并解決下列問題:
(1)寫出上面問題中線段PG與PC的位置關系及
PG
PC
的值;(要有具體過程)
(2)若將條件“正方形ABCD和正方形BEFG”改為“矩形ABCD≌矩形BEFG”其它條件不變,畫圖試探求線段PG與PC的關系.
分析:(1)利用角邊角證明△GFP≌△HDP,證得GP=HP,GF=HD,進而利用正方形的性質可得CH=CG,即可得所求;
(2)由(1)同法可得GP=HP,GF=HD,根據所給矩形全等可得CH=CG,即可得所求.
解答:精英家教網解:(1)如圖1,當點A,B,E在同一條直線上時,有結論:PG⊥PC,PG=PC.
延長GP交DC與點H.
∵P是線段DF的中點,
∴FP=DP.
由題意知DC∥AE,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵四邊形ABCD、BEFG是正方形,
∴CD=CB,GB=GF.
∴CH=CG,
又∵∠HCG=90°,GP=HP,
∴PG⊥PC,PG=PC;

(2)如圖2,當點A,B,E在同一條直線上時,有結論:PG⊥PC,PG=PC
延長GP交DC延長線于點H.精英家教網
∵P是線段DF的中點,
∴FP=DP.
由題意可知DC∥GF,
∴∠GFP=∠HDP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GP=HP,GF=HD,
∵矩形ABCD≌矩形BEFG,
∴CD=GB,CB=GF,
∴CH=CG
又∵∠HCG=90°,GP=HP,
∴PG⊥PC,PG=PC.
點評:綜合考查了正方形的性質及全等三角形的判定與性質;采用類比的思想做相類似的問題是解決本題的關鍵;利用證明三角形全等的方法求解是解決本題的基本思路.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

25、請閱讀下列材料:
問題:如圖,在正方形ABCD和平行四邊形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.
探究:當PG與PC的夾角為多少度時,平行四邊形BEFG是正方形?
小聰同學的思路是:首先可以說明四邊形BEFG是矩形;然后延長GP交DC于點H,構造全等三角形,經過推理可以探索出問題的答案.
請你參考小聰同學的思路,探究并解決這個問題.
(1)求證:四邊形BEFG是矩形;
(2)PG與PC的夾角為
90
度時,四邊形BEFG是正方形.
理由:

查看答案和解析>>

科目:初中數學 來源:2013屆江蘇省南京市鼓樓區中考二模數學試卷(帶解析) 題型:解答題

閱讀:
如圖①,已知:正方形ABCD,面積為a,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接AG、BH、CE、DF,求四邊形MNPQ的面積.

小明提出了如下的解決辦法:如圖②,分別將△AMH、△BNE、△CPF、△DQG分割并拼補成一個與正方形ABCD面積相等的新圖形.
請你參考小明同學解決問題的方法,利用圖形變換解決下列問題:
如圖③,在正方形ABCD中,E1、E2、E3、E4分別為AB、BC、CA、DA的中點,P 1、P2, Q1、Q2,M 1、M2,N1、N2分別為AB、BC、CA、DA的三等分點.
(1)在圖③中畫出一個和正方形ABCD面積相等的新圖形,并用陰影表示(保留畫圖痕跡);
(2)圖③中四邊形P4Q4M4N4的面積為    

查看答案和解析>>

科目:初中數學 來源:2012-2013學年江蘇省南京市鼓樓區中考二模數學試卷(解析版) 題型:解答題

閱讀:

如圖①,已知:正方形ABCD,面積為a,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接AG、BH、CE、DF,求四邊形MNPQ的面積.

小明提出了如下的解決辦法:如圖②,分別將△AMH、△BNE、△CPF、△DQG分割并拼補成一個與正方形ABCD面積相等的新圖形.

請你參考小明同學解決問題的方法,利用圖形變換解決下列問題:

如圖③,在正方形ABCD中,E1、E2、E3、E4分別為AB、BC、CA、DA的中點,P 1、P2, Q1、Q2,M 1、M2,N1、N2分別為AB、BC、CA、DA的三等分點.

(1)在圖③中畫出一個和正方形ABCD面積相等的新圖形,并用陰影表示(保留畫圖痕跡);

(2)圖③中四邊形P4Q4M4N4的面積為    

 

查看答案和解析>>

科目:初中數學 來源:2013屆浙江省九年級第二學期期中考試數學試卷(解析版) 題型:解答題

【問題】如圖,在正方形ABCD內有一點P,PA=,PB=,PC=1,求∠BPC的度數.

分析根據已知條件比較分散的特點,我們可以通過旋轉變換將分散的已知條件集中在一起,于是將△BPC繞點B逆時針旋轉90°,得到了△BP′A(如圖),然后連結PP′.

解決問題請你通過計算求出圖17-2中∠BPC的度數;

【類比研究】如圖,若在正六邊形ABCDEF內有一點P,且PA=,PB=4,PC=2.

(1)∠BPC的度數為       ;(2)直接寫出正六邊形ABCDEF的邊長為         

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕巨乳 | 国产小视频在线 | 欧美国产精品一区 | 太子妃好紧皇上好爽h | 亚洲成人综合在线 | a级毛片基地| 免费久久网站 | 国产精品婷婷久久久久 | 国产第一亚洲 | 亚洲一区二区三区国产 | 欧美 日韩 国产 成人 在线 | 日韩精品一区二区三区中文字幕 | 色花av| 亚洲美女网站 | 日韩一区精品视频 | 国产在线观看av | 欧美一区在线视频 | 欧美亚洲日本 | 久久97精品 | 伊人99| 国产一区二区三区免费视频 | 日韩精品一区二区三区在线播放 | 久久国产精品无码网站 | 国产精品毛片久久久久久久 | 一级篇| 日本欧美在线观看 | 欧美日韩国产精品一区二区亚洲 | 性色av一区二区三区 | 亚洲精品99| 亚洲国产成人精品女人久久久 | 九色在线观看 | 狠狠av | 国产精品一区二区三区四区 | www伊人 | 中文字幕一区二区三区乱码在线 | h在线观看 | 三区在线 | 成人欧美一区二区 | 成人黄色精品 | 免费黄色成人 | 国产日韩欧美一区 |