【題目】已知:二次函數的圖象與
軸交于
兩點,其中點
,與
軸負半軸交于點
,起對稱軸是直線
.
(1)求二次函數的解析式;
(2)圓經過點
的外接圓,點
是
延長線上一點,
的平分線交圓
于點
,連接
、
,求
的面積;
(3)在(2)的條件下,二次函數的圖象上是否存在點
,使得
?如果存在,請求出所有符合條件的
點坐標;如果不存在,請說明理由.
【答案】(1);(2)
;(3)存在,
,
【解析】
(1)根據拋物線的對稱性,可以求出點B的坐標,再用待定系數法求解即可;
(2)根據以及圓的相關性質,可知△ABD為等腰直角三角形,從而得出
與
的數量關系,列式求解即可;
(3)使得的點存在兩種情況,利用相似導出線段之間的比值,再用直線和拋物線的解析式聯立求得相關點的坐標.
(1)∵點,對稱軸為
∴
將、
、
代入
中
解得
∴拋物線的解析式為:
(2)∵,
,
∴,
,
,
∴
又∵,
∴,
∴,
∴
∴為圓
的直徑,
點坐標為
,
∴
又∵平分
,
∴,
∴,
為等腰直角三角形.
連接,則
,
,
∴,
點坐標為
設與
軸交于點
,
∵,
∴,
∴
作軸于點
,
∵,
∴,
∴;
(3)拋物線上存在點,使得
.分兩種情況討論:
①過點作直線
,交
軸于
.
∵,
∴,
又∵,
∴,直線
與拋物線在
點右側的交點即為點
.
∵,
,
∴,
∴
∵
∴,
.
設直線的解析式為
則有,
解得,
直線的解析式為
∴
解得,
(舍)
∴
②過點作
,交
軸于
點.
∵,
∴
即直線與拋物線在
點右側的交點即為
點
又∵,
∴
∴
∴
∴
設直線的解析式為
則有,解得
,
∴直線的解析式為
∴,解得
,
(舍)
∴
∴符合條件的點有兩個:
,
.
科目:初中數學 來源: 題型:
【題目】“精準扶貧”這是新時期黨和國家扶貧工作的精髓和亮點.某校團委隨機抽取部分學生,對他們是否了解關于“精準扶貧”的情況進行調查,調查結果有三種:A、了解很多;B、了解一點;C、不了解.團委根據調查的數據進行整理,繪制了尚不完整的統計圖如下,圖1中C區域的圓心角為36°,請根據統計圖中的相關的信息,解答下列問題:
(1)求本次活動共調查了 名學生;圖1中,B區域的圓心角度是 ;在抽取的學生中調查結果的中位數落在 區域里.
(2)補全條形統計圖.
(3)若該校有1200名學生,請估算該校不是了解很多的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們規定,以二次函數y=ax2+bx+c的二次項系數a的2倍為一次項系數,一次項系數b為常數項構造的一次函數y=2ax+b叫做二次函數y=ax2+bx+c的“子函數”,反過來,二次函數y=ax2+bx+c叫做一次函數y=2ax+b的“母函數”.
(1)若一次函數y=2x-4是二次函數y=ax2+bx+c的“子函數”,且二次函數經過點(3,0),求此二次函數的解析式及頂點坐標.
(2)若“子函數”y=x-6的“母函數”的最小值為1,求“母函數”的函數表達式.
(3)已知二次函數y=-x2-4x+8的“子函數”圖象直線l與x軸、y軸交于C、D兩點,動點P為二次函數y=-x2-4x+8對稱軸右側上的動點,求△PCD的面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的圖象如圖所示,有下列結論:①
;②
;③若
為任意實數,則
;④a-b+c>0;⑤若
,且
,則
.其中,正確結論的個數為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,為原點,拋物線
經過點
,對稱軸為直線
,點
關于直線
的對稱點為點
.過點
作直線
軸,交
軸于點
.
(Ⅰ)求該拋物線的解析式及對稱軸;
(Ⅱ)點在
軸上,當
的值最小時,求點
的坐標;
(Ⅲ)拋物線上是否存在點,使得
,若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一個正方形紙片放置在平面直角坐標系中,點
,點
,
,
點.動點
在邊
上,點
在邊
上,沿
折疊該紙片,使點
的對應點
始終落在邊
上(點
不與
重合),點
落在點
處,
與
交于點
.
(Ⅰ)如圖①,當時,求點
的坐標;
(Ⅱ)如圖②,當點落在
的中點時,求點
的坐標;
(Ⅲ)隨著點在
邊上位置的變化,
的周長是否發生變化?如變化,簡述理由;如不變,直接寫出其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數(其中
)的圖象與x軸分別交于點A、B(點A位于B的左側),與y軸交于點C,過點C作x軸的平行線CD交二次函數圖像于點D.
(1)當m2時,求A、B兩點的坐標;
(2)過點A作射線AE交二次函數的圖像于點E,使得BAEDAB.求點E的坐標(用含m的式子表示);
(3)在第(2)問的條件下,二次函數的頂點為F,過點C、F作直線與x軸于點G,試求出GF、AD、AE的長度為三邊長的三角形的面積(用含m的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD
(1) 如圖1,若AB為邊在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度數
(2) 如圖2,∠ABC=α,∠ACD=β,BC=6,BD=8
① 若α=30°,β=60°,AB的長為
② 若改變α、β的大小,但α+β=90°,求△ABC的面積
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了落實黨的“精準扶貧”政策,A、B兩城決定向C、D兩鄉運送肥料以支持農村生產,已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉運肥料的費用分別為20元/噸和25元/噸;從B城往C、D兩鄉運肥料的費用分別為15元/噸和24元/噸.現C鄉需要肥料240噸,D鄉需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設從A城運往C鄉肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉的運費每噸減少a(0<a<6)元,這時怎樣調運才能使總運費最少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com