【題目】如圖,拋物線y1=ax2+2ax+1與軸有且僅有一個公共點A,經過點A的直線y2=kx+b交該拋物線于點B,交y軸于點C,且點C是線段AB的中點.
(1)求的值;
(2)求直線AB對應的函數解析式;
(3)直接寫出當y1 ≥y2 時,的取值范圍.
【答案】(1)a的值為1(2)直線AB的解析式為y=2x+2(3)當y1 ≥y2時,x的取值范圍為 x≥1或x≤-1
【解析】分析:根據拋物線
與
軸有且僅有一個公共點,則
,即可求出
的值;
求得
的坐標,用待定系數法即可求出直線AB對應的函數解析式;
結合兩個函數圖象可知當但直線在拋物線上方時可得到
的解集.
詳解:(1)∵拋物線與x軸有且僅有一個公共點A,
∴
解得a1=0(舍去),a2=1,
∴a的值為1.
(2)由(1)得拋物線解析式為
∵
∴頂點A的坐標為
∵點C是線段AB的中點, c的橫坐標為0,設B的橫坐標為m.
∴,
得m=1.
∴B點的橫坐標為1,
∴當x=1時,
∴B(1,4),
把A
代入
得
,
解得:,
∴直線AB的解析式為
(3)當時,x的取值范圍為 x≥1或x≤-1.
科目:初中數學 來源: 題型:
【題目】某中學舉行“校園好聲音”歌手大賽,根據初賽成績,初二和初三各選出5名選手組成初二代表隊和初三代表隊參加學校決賽。兩個隊各選出的5名選手的決賽成績如圖所示:
平均數(分) | 中位數(分) | 眾數(分) | |
初二 | 85 | ||
初三 | 85 | 100 |
(1)根據圖示填寫上表;
(2)結合兩隊成績的平均數和中位數,分析哪個隊的決賽成績較好;
(3)計算兩隊決賽成績的方差,并判斷哪一個代表隊選手成績較為穩定.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的 統計圖,已知“查資料”的人數是 40人.請你根據以上信息解答下列問題:
(1)在扇形統計圖中,“玩游戲”對應的百分比為______,圓心角度數是______度;
(2)補全條形統計圖;
(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-
,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】過點A0,2的直線l1:y1kxbk0與直線l2:y2x1交于點P2,m。
(1)求點P的坐標和直線l1的解析式;
(2)直接寫出使得y1y2的x的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點P,Q分別在邊AB,BC的延長線上且BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②△OAE∽△OPA;③當正方形的邊長為3,BP=1時,cos∠DFO=,其中正確結論的個數是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點Pa,b和點Qa,b,給出如下定義:若,則稱點Q為點P的限變點,例如:點(2,3)的限變點的坐標是(2,3),點2,5的限變點的坐標是2,5。
(1)在點A2,1,B1,2中有一個點是函數y=圖象上某一個點的限變點,這個點是 ;
(2)求點,1的限變點的坐標;
(3)若點P在函數yx32xk,k2的圖象上,其限變點Q的縱坐標b的取值范圍是5b2,求k的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統計如下:
(1)根據上述信息可知:甲命中環數的中位數是 環,乙命中環數的眾數是 環;
(2)試通過計算說明甲、乙兩人的成績誰比較穩定?
(3)如果乙再射擊1次,命中8環,那么乙射擊成績的方差會 .(填 “變大”、“變小” 或 “不變”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為發展學生的核心素養,培養學生的綜合能力,某學校計劃開設四門選修課:樂器、舞蹈、繪畫、書法.學校采取隨機抽樣的方法進行問卷調查(每個被調查的學生必須選擇而且只能選擇其中一門).對調查結果進行整理,繪制成如下兩幅不完整的統計圖,請結合圖中所給信息解答下列問題:
(1)本次調查的學生共有 人,在扇形統計圖中,m的值是 ;
(2)將條形統計圖補充完整;
(3)在被調查的學生中,選修書法的有2名女同學,其余為男同學,現要從中隨機抽取2名同學代表學校參加某社區組織的書法活動,請寫出所抽取的2名同學恰好是1名男同學和1名女同學的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com