【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數,abc≠0)與直線l都經過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關系,求m,n的值;
(2)若某“路線”L的頂點在反比例函數y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當常數k滿足≤k≤2時,求拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.
【答案】(1)m的值為﹣1,n的值為1.(2)y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)
≤S≤
.
【解析】
試題分析:(1)確定直線y=mx+1與y軸的交點坐標,將其代入拋物線解析式中即可求出n的值;再根據拋物線的解析式找出頂點坐標,將其代入直線解析式中即可得出結論;(2)確定直線與反比例函數圖象的交點坐標,由此設出拋物線的解析式,再由直線的解析式找出直線與x軸的交點坐標,將其代入拋物線解析式中即可得出結論;(3)由拋物線解析式找出拋物線與y軸的交點坐標,再根據拋物線的解析式找出其頂點坐標,由兩點坐標結合待定系數法即可得出與該拋物線對應的“帶線”l的解析式,找出該直線與x、y軸的交點坐標,結合三角形的面積找出面積S關于k的關系上,由二次函數的性質即可得出結論.
試題解析:(1)令直線y=mx+1中x=0,則y=1,
即直線與y軸的交點為(0,1);
將(0,1)代入拋物線y=x2﹣2x+n中,
得n=1.
∵拋物線的解析式為y=x2﹣2x+1=(x﹣1)2,
∴拋物線的頂點坐標為(1,0).
將點(1,0)代入到直線y=mx+1中,
得:0=m+1,解得:m=﹣1.
答:m的值為﹣1,n的值為1.
(2)將y=2x﹣4代入到y=中有,
2x﹣4=,即2x2﹣4x﹣6=0,
解得:x1=﹣1,x2=3.
∴該“路線”L的頂點坐標為(﹣1,﹣6)或(3,2).
令“帶線”l:y=2x﹣4中x=0,則y=﹣4,
∴“路線”L的圖象過點(0,﹣4).
設該“路線”L的解析式為y=m(x+1)2﹣6或y=n(x﹣3)2+2,
由題意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,
解得:m=2,n=﹣.
∴此“路線”L的解析式為y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.
(3)令拋物線L:y=ax2+(3k2﹣2k+1)x+k中x=0,則y=k,
即該拋物線與y軸的交點為(0,k).
拋物線L:y=ax2+(3k2﹣2k+1)x+k的頂點坐標為(﹣,
),
設“帶線”l的解析式為y=px+k,
∵點(﹣,
)在y=px+k上,
∴=﹣p
+k,
解得:p=.
∴“帶線”l的解析式為y=x+k.
令∴“帶線”l:y=x+k中y=0,則0=
x+k,
解得:x=﹣.
即“帶線”l與x軸的交點為(﹣,0),與y軸的交點為(0,k).
∴“帶線”l與x軸,y軸所圍成的三角形面積S=|﹣
|×|k|,
∵≤k≤2,
∴≤
≤2,
∴S==
=
,
當=1時,S有最大值,最大值為
;
當=2時,S有最小值,最小值為
.
故拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍為≤S≤
.
科目:初中數學 來源: 題型:
【題目】將下列多項式分解因式,結果中不含因式x﹣1的是( )
A. x2﹣1 B. x(x﹣2)+(2﹣x) C. x2﹣2x+1 D. x2+2x+1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖 a,若 AB∥CD,點 P 在 AB、CD 外部,則∠BPD、∠B、∠D 之間有何數量關系?
把下面的解答填上根據:
解:∠B=∠BPD+∠PDC.
理由:作PE∥AB
∵ AB∥CD ( )
∴AB∥CD∥PE ( )
∴∠B=∠BPE, ∠D=∠DPE ( )
∵∠BPE=∠BPD+∠DPE
∴∠B=∠BPD+∠PDC ( )
(2)若AB∥CD,將點P移到AB、CD內部,如圖b,以上結論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D 之間有何數量關系?請證明你的結論.
(3)在圖 b 中,將直線 AB 繞點B逆時針方向旋轉一定角度交直線 CD 于點 Q,如圖 c,則∠BPD、∠B、∠D、∠BQD 之間滿足的數量關系是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 正整數和負整數統稱整數
B. 有理數分為正有理數和負有理數
C. 有理數是指整數,分數,正有理數,負有理數和零這五類數
D. 整數和分數統稱有理數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】同一平面內有四條直線a、b、c、d,若a∥b,a⊥c,b⊥d,則直線c、d的位置關系為( )
A. 互相垂直 B. 互相平行 C. 相交 D. 無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】⊙O的半徑為7cm,點P到圓心O的距離OP=10cm,則點P與⊙O的位置關系為( 。
A. 點P在圓上 B. 點P在圓內 C. 點P在圓外 D. 無法確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com