【題目】已知二次函數y=x2+bx+c(其中b,c為常數,c>0)的頂點恰為函數y=2x和y=的其中一個交點.則當a2+ab+c>2a>
時,a的取值范圍是
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+2與x軸交于點A,與y軸交于點B,拋物線y=﹣
x2+bx+c經過A、B兩點,與x軸的另一個交點為 C.
(1)求拋物線的解析式;
(2)直線AB上方拋物線上的點D,使得∠DBA=2∠BAC,求D點的坐標;
(3)M是平面內一點,將△BOC繞點M逆時針旋轉90°后,得到△B1O1C1,若△B1O1C1的兩個頂點恰好落在拋物線上,請求點B1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,小明準備測量學校旗桿AB的高度,他發現陽光下,旗桿AB的影子恰好落在水平地面和斜坡的坡面上,測得水平地面上的影長BC=20m,斜坡坡面上的影長CD=8m,太陽光線AD與水平地面成銳角為26°,斜坡CD與水平地面所成的銳角為30°,求旗桿AB的高度(精確到1m).(參考數據:sin26°=0.44,cos26°=0.90,tan26°=0.49)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店銷售一款進價為每件40元的護膚品,調查發現,銷售單價不低于40元且不高于80元時,該商品的日銷售量y(件)與銷售單價x(元)之間存在一次函數關系,當銷售單價為44元時,日銷售量為72件;當銷售單價為48元時,日銷售量為64件.
(1)求y與x之間的函數關系式;
(2)設該護膚品的日銷售利潤為w(元),當銷售單價x為多少時,日銷售利潤w最大,最大日銷售利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象如圖所示,則下列判斷中錯誤的是
A.圖象的對稱軸是直線x=1 B.當x>1時,y隨x的增大而減小
C.一元二次方程ax2+bx+c=0的兩個根是-1,3 D.當-1<x<3時,y<0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知某種產品的進價為每件40元,現在的售價為每件60元,每星期可賣出300件.市場調查發現,該產品每降價1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過380件,設這種產品每件降價x元(x為整數),每星期的銷售利潤為w元.
(1)求w與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)該產品銷售價定為每件多少元時,每星期的銷售利潤最大?最大利潤是多少元?
(3)該產品銷售價在什么范圍時,每星期的銷售利潤不低于6000元,請直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形和正方形
的頂點
在
軸上,頂點
,
在
軸上,點
在
邊上,反比例函數
的圖象經過點
、
和邊
的中點
.若
,則正方形
的面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半徑為5的⊙P與y軸交于點M(0,﹣4),N(0,﹣10)
(1)求點P的坐標;
(2)將⊙P繞點O順時針方向旋轉90°后得⊙A,交x軸于B、C,求過A、B、C三個點的拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動點,連結CP,將CP繞點C順時針方向旋轉90°得CE,連結BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com