日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角,角的兩邊分別交AB、AC邊于M、N兩點,連接MN.
探究:
(1)線段BM、MN、NC之間的數量關系.
(2)若點M、N分別是AB、CA延長線上的點,其它條件不變,再探線段BM、MN、NC之間的數量關系,在圖中畫出圖形.并對以上兩種探究結果選擇一個你喜歡的加以證明.
分析:延長AC至E,使得CE=BM并連接DE,構造全等三角形,找到MD=DE,∠BDM=∠CDE,BM=CE,再進一步證明△DMN≌△DEN,進而得到MN=BM+NC;
(2)MN=NC-BM.仿(1)的思路運用截長法證明.
解答:解:(1)MN=BM+NC.理由如下:
延長AC至E,使得CE=BM,連接DE,如圖所示:
∵△BDC為等腰三角形,△ABC為等邊三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°.
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE,BM=CE,
又∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=∠BDC-∠MDN=60°,
∴∠CDE+∠NDC=60°,即∠NDE=60°,
∵∠MDN=∠NDE=60°.
∴△DMN≌△DEN(SAS),
∴MN=EN.
又NE=NC+CE,BM=CE,
∴MN=BM+NC;
(2)MN=NC-BM.
證明:在CA上截取CE=BM.
由(1)知:∠DCE=∠DBM=90°,DC=DB.
又CE=BM,
∴△DCE≌△DBM (SAS)
∴∠CDE=∠BDM,DM=DE.
∴∠MDN=∠EDN=60°.
∴△MDN≌△EDN (SAS)
∴NM=NE.
∵NE=NC-CE,CE=BM,
∴MN=NC-BM.
點評:本題考查了全等三角形的判定與性質及等腰三角形的性質;此題從不同角度考查了作相等線段構造全等三角形的能力,要充分利用等邊三角形及等腰三角形的性質,轉換各相等線段解答.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.
類似的,可以在等腰三角形中建立邊角之間的聯系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相精英家教網互唯一確定的.
根據上述對角的正對定義,解下列問題:
(1)sad 60°的值為( B )
A.
1
2
;B.1;C.
3
2
;D.2
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2014•寶山區一模)通過銳角三角比的學習,我們已經知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長比與角的大小之間可以相互轉化.類似的我們可以在等腰三角形中建立邊角之間的聯系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖在△ABC中,AB=AC,
頂角A的正對記作sadA,這時sadA=
底邊
=
BC
AB
.我們容易知道一個角的大小與這個角的正對值也是互相唯一確定的.根據上述角的正對定義,解下列問題:
(1)sad60°=
1
1
;sad90°=
2
2

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)試求sad36°的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.

類似的,可以在等腰三角形中建立邊角之間的聯系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時

sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據上述對角的正對定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B.1                  C.                  D.2

(2)對于,∠A的正對值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

科目:初中數學 來源:2011屆北京市昌平區初三上學期期末考試數學卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.
類似的,可以在等腰三角形中建立邊角之間的聯系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時
sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據上述對角的正對定義,解下列問題:

(1)sad 的值為( ▼ )

A.B.1 C.D.2
(2)對于,∠A的正對值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數學 來源:2010-2011學年北京市昌平區初三上學期期末考試數學卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.

類似的,可以在等腰三角形中建立邊角之間的聯系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時

sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據上述對角的正對定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)對于,∠A的正對值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本一区二区三区四区 | 国产精品久久久久毛片软件 | 国产高清第一页 | 久久91精品国产 | 午夜精品久久久久久久久久久久 | 欧美日韩免费一区二区三区 | 国产精品一区二区免费看 | 色婷婷在线视频 | 一区二区三区日韩 | 欧美亚洲国产精品 | 中文字幕亚洲欧美日韩在线不卡 | 久久久国产视频 | 午夜免费福利在线 | 国产在线二区 | 精品国产青草久久久久福利 | 神马久久久久久 | 欧美性久久 | 韩日免费视频 | 天天舔天天干天天操 | 午夜免费看视频 | 日本激情在线 | 国内精品亚洲 | 黄色毛片在线看 | 欧美午夜理伦三级在线观看 | 中文字幕在线观 | 欧美一区2区三区4区公司二百 | 亚洲日韩aⅴ在线视频 | 日韩激情视频一区 | 欧美成人精品一区二区 | 国产一级特黄视频 | 91久久久久久久久 | 国产精品久久久久久久久免费软件 | 天堂在线中文字幕 | 国产成人av一区二区 | 97精品| 99久久99久久精品国产片果冻 | 国产香蕉视频在线播放 | 国产精品永久 | 久久99精品久久久久子伦 | 欧美一级爆毛片 | 狠狠色综合网站久久久久久久 |