【題目】如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉180°,得到△BP2C;把△BP2C繞點C順時針旋轉180°,得到△CP3D,依此類推,則旋轉第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為( )
A. (4030,1) B. (4029,﹣1)
C. (4033,1) D. (4035,﹣1)
科目:初中數學 來源: 題型:
【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( )(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A. 5.1米 B. 6.3米 C. 7.1米 D. 9.2米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,△ABC的三個頂點的坐標分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)在平面直角坐標系中畫出與△ABC關于點P(1,0)成中心對稱的△A'B'C',并分別寫出點A',B',C'的坐標;
(2)如果點M(a,b)是△ABC邊上(不與A,B,C重合)任意一點,請寫出在△A'B'C'上與點M對應的點M'的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+2x+c圖象經過點A (1,4)和點C (0,3).
(1)求該二次函數的解析式;
(2)結合函數圖象,直接回答下列問題:
①當﹣1<x<2時,求函數y的取值范圍: .
②當y≥3時,求x的取值范圍: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0)、C(2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)設點M(3,n),求使MN+MD取最小值時n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于代數式,不同的表達形式能表現出它的不同性質.例如代數式,若將其寫成
的形式,就能看出不論字母x取何值,它都表示正數;若將它寫成
的形式,就能與代數式B=
建立聯系.下面我們改變x的值,研究一下A,B兩個代數式取值的規律:
x | -2 | -1 | 0 | 1 | 2 | 3 |
10 | 5 | 2 | 1 | 5 | ||
17 | 10 | 5 |
(1)完成上表;
(2)觀察表格可以發現:
若x=m時,,則x=m+1時,
.我們把這種現象稱為代數式A參照代數式B取值延后,此時延后值為1.
①若代數式D參照代數式B取值延后,相應的延后值為2,求代數式D;
②已知代數式參照代數式
取值延后,請直接寫出b-c的值:________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人加工同一種零件,甲每天加工的數量是乙每天加工數量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.
(1)求甲、乙兩人每天各加工多少個這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費分別是 150 元和 120 元,現有 3000 個這種零件的加工任務,甲單獨加工一段時間后另有安排,剩余任務由乙單獨完成.如果總加工費不超過 7800 元,那么甲至少加工了多少天?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com