【題目】對于一元二次方程(
,
,
,
為常數),下列說法:
①方程的解為;
②若,則方程必有一根為
;
③若,則一元二次方程
必有一根為
;
④若,則方程
有兩個不等實數根;
⑤若,則方程
有兩個相等的實數根,
正確的結論是________.
【答案】②③④
【解析】
有當△=b2-4ac>0時,方程的解為,由此即可判定說法錯誤;
②首先把b=a+c變為a-b+c=0,當x=-1時,ax2+bx+c=a-b+c,由此即可判定說法正確;
③首先把b=2a+c變為4a-2b+c=0,當x=-2時,ax2+bx+c=4a-2b+c,由此即可判定說法正確;
④首先由ac<0,可得方程cx2+bx+a=0是一元二次方程,再根據△=b2-4ac>0,可得方程cx2+bx+a=0有兩個不等實數根,由此即可判定說法正確;
⑤只有當c≠0時,方程cx2+bx+a=0是一元二次方程,若b2-4ac=0,則方程cx2+bx+a=0有兩個相等的實數根,由此即可判定說法錯誤.
①對于一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數),
當△=b2-4ac<0時,方程無解;
當△=b2-4ac≥0時,方程的解為,故原說法錯誤;
②∵b=a+c,
∴a-b+c=0,
∴當x=-1時,ax2+bx+c=a-b+c=0,
∴x=-1為方程ax2+bx+c=0的一根,故原說法正確;
③∵b=2a+ c,
∴4a-2b+c=0,
∴當x=-2時,ax2+bx+c=4a-2b+c=0,
∴一元二次方程ax2+bx+c=0必有一根為x=-2,故原說法正確;
④∵ac<0,
∴c≠0,方程cx2+bx+a=0是一元二次方程,
∵△=b2-4ac>0,
∴方程cx2+bx+a=0有兩個不等實數根,故原說法正確;
⑤當c≠0時,方程cx2+bx+a=0是一元二次方程,若b2-4ac=0,則方程cx2+bx+a=0有兩個相等的實數根;
當c=0時,b=0,方程cx2+bx+a=0不可能有兩個相等的實數根,故原說法錯誤.
故答案是:②③④.
科目:初中數學 來源: 題型:
【題目】如圖,三角形DEF是三角形ABC經過某種變換得到的圖形,點A與點D,點B與點E,點C與點F分別是對應點,觀察點與點的坐標之間的關系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標,并說說對應點的坐標有哪些特征;
(2)若點P(a+3,4-b)與點Q(2a,2b-3)也是通過上述變換得到的對應點,求a,b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊形為1個單位長度,線段AD的兩個端點都在格點上,點B是線段AD上的格點,且BD=1,直線l在格線上.
(1)在直線l的左側找一格點C,使得△ABC是等腰三角形(AC<AB),畫出△ABC.
(2)將△ABC沿直線l翻折得到△,試畫出△
.
(3)畫出點P,使得點P到點D、A’的距離相等,且到邊AB、AA’的距離相等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛汽車和一輛摩托車分別從A,B兩地去同一個城市,它們離A地的路程隨時間變化的圖象如圖所示.則下列結論:①摩托車比汽車晚到1h;②A,B兩地的路程為20km;③摩托車的速度為45km/h,汽車的速度為60km/h;④汽車出發1小時后與摩托車相遇,此時距B地40千米.其中正確結論的個數是( )
A. 2個 B. 3個 C. 4個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(題文)如圖,在平面直角坐標系
中,拋物線
經過點
,頂點為點
,點
為拋物線上的一個動點,
是過點
且垂直于
軸的直線,過
作
,垂足為
,連接
.
求拋物線的解析式,并寫出其頂點
的坐標;
①當
點運動到
點處時,計算:
________,
________,由此發現,
________
(填“
”、“
”或“
”);
②當點在拋物線上運動時,猜想
與
有什么數量關系,并證明你的猜想;
如圖
,設點
,問是否存在點
,使得以
,
,
為頂點的三角形與
相似?若存在,求出
點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料并回答問題:
我們知道,乘法公式可以用平面幾何圖形的面積來表示,實際上還有一些代數恒等式也可以用這種形式表示,如:,就可以用圖1或圖2等圖形的面積表示.
(1)請寫出圖3所表示的代數恒等式: ;
(2)試畫一個幾何圖形,使它的面積表示:;
(3)請仿照上述方法另寫一個含有,
的代數恒等式,并畫出與它對應的幾何圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究:已知平行四邊形的面積為
,
是
所在直線上一點.
如圖
:當點
與
重合時,
________;
如圖
,當點
與
與
均不重合時,
________;
如圖
,當點
在
(或
)的延長線時,
________.
拓展推廣:如圖,平行四邊形
的面積為
,
、
分別為
、
延長線上兩點,連接
、
、
、
,求出圖中陰影部分的面積,并說明理由.
實踐應用:如圖是一平行四邊形綠地,
、
分別平行于
、
,它們相交于點
,
,
,
,
,現進行綠地改造,在綠地內部作一個三角形區域
(連接
、
、
,圖中陰影部分)種植不同的花草,求出三角形區域的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形的邊長為
,
為坐標原點,
、
在坐標軸上,把正方形
繞點
順時針旋轉后得到正方形
,
交
軸于點
,且點
恰為
的中點,則點
的坐標為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我校圖書館大樓工程在招標時,接到甲乙兩個工程隊的投標書,每施工一個月,需付甲工程隊工程款16萬元,付乙工程隊12萬元。工程領導小組根據甲乙兩隊的投標書測算,可有三種施工方案:
(1)甲隊單獨完成此項工程剛好如期完工;
(2)乙隊單獨完成此項工程要比規定工期多用3個月;
(3)若甲乙兩隊合作2個月,剩下的工程由乙隊獨做也正好如期完工。
你覺得哪一種施工方案最節省工程款,說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com