【題目】觀察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根據上述規律,第n個等式應表示為 .
科目:初中數學 來源: 題型:
【題目】列方程解應用題 某商店用2000元購進一批小學生書包,出售后發現供不應求,商店又購進第二批同樣的書包,所購數量是第一批購進數量的3倍,但單價貴了2元,結果購買第二批書包用了6600元.
(1)請求出第一批每只書包的進價;
(2)該商店第一批和第二批分別購進了多少只書包;
(3)若商店銷售這兩批書包時,每個售價都是30元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】要反映我區12月11日至17日這一周每天的最高氣溫的變化趨勢,宜采用( )
A. 條形統計圖 B. 折線統計圖
C. 扇形統計圖 D. 頻數分布統計圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點F。
(1)依題意補全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請將下面的證明過程補充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE= , ∠COF= ∠COB。
(理由: )
∵點C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠。
(理由: )
∴∠ACE=∠COF。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(0,1),B(4,1),C為x軸正半軸上一點,且AC平分∠OAB.
(1)求證:∠OAC=∠OCA;
(2)如圖2,若分別作∠AOC的三等分線及∠OCA的外角的三等分線交于點P,即滿足∠POC= ∠AOC,∠PCE=
∠ACE,求∠P的大小;
(3)如圖3,在(2)中,若射線OP、OC滿足∠POC= ∠AOC,∠PCE=
∠ACE,猜想∠OPC的大小,并證明你的結論(用含n的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,點E是AD的中點,且AE=1,BE的垂直平分線MN恰好過點C.則矩形的一邊AB的長度為( )
A.1
B.
C.
D.2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com