【題目】如圖,拋物線y=ax2+bx+4(a≠0)與軸交于點B (-3 ,0) 和C (4 ,0)與
軸交于點A.
(1) a = ,b = ;
(2) 點M從點A出發以每秒1個單位長度的速度沿AB向B運動,同時,點N從點B出發以每秒1個單位長度的速度沿BC向C運動,當點M到達B點時,兩點停止運動.t為何值時,以B、M、N為頂點的三角形是等腰三角形?
(3) 點P是第一象限拋物線上的一點,若BP恰好平分∠ABC,請直接寫出此時點P的坐標.
【答案】(1),
;(2)
;(3)
【解析】
(1)直接利用待定系數法求二次函數解析式得出即可;
(2)分三種情況:①當BM=BN時,即5-t=t,②當BM=NM=5-t時,過點M作ME⊥OB,因為AO⊥BO,所以ME∥AO,可得:即可解答;③當BE=MN=t時,過點E作EF⊥BM于點F,所以BF=
BM=
(5-t),易證△BFE∽△BOA,所以
即可解答;
(3)設BP交y軸于點G,過點G作GH⊥AB于點H,因為BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設出點P坐標,易證△BGO∽△BPD,所以
,即可解答.
解:解:(1)∵拋物線過點B (-3 ,0) 和C (4 ,0),
∴ ,
解得:;
(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,
在Rt△ABO中,由勾股定理得:AB=5,
t秒時,AM=t,BN=t,BM=AB-AM=5-t,
①如圖:當BM=BN時,即5-t=t,解得:t= ;
,
②如圖,當BM=NM=5-t時,過點M作ME⊥OB,因為BN=t,由三線合一得:BE=BN=
t,又因為AO⊥BO,所以ME∥AO,所以
,即
,解得:t=
;
③如圖:當BE=MN=t時,過點E作EF⊥BM于點F,所以BF=BM=
(5-t),易證△BFE∽△BOA,所以
,即
,解得:t=
.
(3)設BP交y軸于點G,過點G作GH⊥AB于點H,因為BP恰好平分∠ABC,所以OG=GH,BH=BO=3,所以AH=2,AG=4-OG,在Rt△AHG中,由勾股定理得:OG=,設P(m,-
m2+
m+4),因為GO∥PD,∴△BGO∽△BPD,∴
,即
,解得:m1=
,m2=-3(點P在第一象限,所以不符合題意,舍去),m1=
時,-
m2+
m+4=
故點P的坐標為
科目:初中數學 來源: 題型:
【題目】某校隨機抽取九年級部分同學接受一次內容為“最適合自己的考前減壓方式”的調查活動,學校收集整理數據后,將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統計圖,請根據圖中的信息解答下列問題:
九年級接受調查的同學共有多少名,并補全條形統計圖;
九年級共有500名學生,請你估計該校九年級聽音樂減壓的學生有多少名;
若喜歡“交流談心”的5名同學中有三名男生和兩名女生,心理老師想從5名同學中任選兩名同學進行交流,請用畫樹狀圖或列表的方法求同時選出的兩名同學都是女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島
位于它的北偏東
方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島
位于它的北偏東
方向.如果航母繼續航行至小島
的正南方向的
處,求還需航行的距離
的長.
(參考數據:,
,
,
,
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O外,∠ABC的平分線與⊙O交于點D,∠C=90°.
(1)CD與⊙O有怎樣的位置關系?請說明理由;
(2)若∠CDB=60°,AB=6,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數恰好與用360元購買甲種樹苗的棵數相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,半徑為2的圓O與含30°角的直角三角板ABC的AB邊切于點A,將直角三角板沿BA邊所在的直線向右平移,當平移到AC與圓O相切時,該直角三角板的平移距離為( )
A. B.
C. 1D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在同一直線噵路上同起點,同方向同進出發,分別以不同的速度勻速跑步1500米,當甲超出乙200米時,甲停下來等候乙,甲、乙會合后,兩人分別以原來的速度繼續跑向終點,先到達終點的人在終點休息,在跑步的整個過程中,甲、乙兩人的距離y(米)與出發的時間x(秒)之間的關系如圖所示,則甲到終點時,乙距離終點______________米。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)不在原圖添加字母和線段,對△ABC只加一個條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com