日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(2012•鞍山)如圖,AB是⊙O的弦,AB=4,過圓心O的直線垂直AB于點D,交⊙O于點C和點E,連接AC、BC、OB,cos∠ACB=
13
,延長OE到點F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.
分析:(1)連OA,由直徑CE⊥AB,根據(jù)垂徑定理可得到AD=BD=2,弧AE=弧BE,利用圓周角定理得到∠ACE=∠BCE,∠AOB=2∠ACB,且∠AOE=∠BOE,則∠BOE=∠ACB,可得到cos∠BOD=cos∠ACB=
1
3
,在Rt△BOD中,設OD=x,則OB=3x,利用勾股定理可計算出x=
2
2
,則OB=3x=
3
2
2
;
(2)由于FE=2OE,則OF=3OE=
9
2
2
,則
OB
OF
=
1
3
,而
OD
OB
=
1
3
,于是得到
OB
OF
=
OD
OB
,根據(jù)相似三角形的判定即可得到△OBF∽△ODB,根據(jù)相似三角形的性質有∠OBF=∠ODB=90°,然后根據(jù)切線的判定定理即可得到結論.
解答:(1)解:連OA,如圖,
∵直徑CE⊥AB,
∴AD=BD=2,弧AE=弧BE,
∴∠ACE=∠BCE,∠AOE=∠BOE,
又∵∠AOB=2∠ACB,
∴∠BOE=∠ACB,
而cos∠ACB=
1
3
,
∴cos∠BOD=
1
3
,
在Rt△BOD中,設OD=x,則OB=3x,
∵OD2+BD2=OB2,
∴x2+22=(3x)2,解得x=
2
2
,
∴OB=3x=
3
2
2

即⊙O的半徑為
3
2
2
;

(2)證明:∵FE=2OE,
∴OF=3OE=
9
2
2

OB
OF
=
1
3

OD
OB
=
1
3
,
OB
OF
=
OD
OB
,
而∠BOF=∠DOB,
∴△OBF∽△ODB,
∴∠OBF=∠ODB=90°,
∵OB是半徑,
∴BF是⊙O的切線.
點評:本題考查了圓的綜合題:垂直于弦的直徑平分弦,并且平分弦所對的。辉谕瑘A或等圓中,同弧或等弧所對的圓周角相等,一條弧所對的圓周角的度數(shù)等于它所對的圓心角的度數(shù)的一半;過半徑的外端點與半徑垂直的直線是圓的切線;運用三角形相似證明角度相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,直線a∥b,EF⊥CD于點F,∠2=65°,則∠1的度數(shù)是
25°
25°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于點E,且E是BC中點;動點P從點E出發(fā)沿路徑ED→DA→AB以每秒1個單位長度的速度向終點B運動;設點P的運動時間為t秒,△PBC的面積為S,則下列能反映S與t的函數(shù)關系的圖象是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,△ABC內接于⊙O,AB、CD為⊙O直徑,DE⊥AB于點E,sinA=
12
,則∠D的度數(shù)是
30°
30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鞍山)如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(
3
≈1.732,結果保留三個有效數(shù)字).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 少妇被粗大的猛烈进大胸视频 | 亚洲中出 | 欧美大片一区二区 | 日韩精品久久久 | 久草免费在线色站 | 色视频网站在线观看一=区 www..99re | 日韩欧美国产一区二区三区 | 午夜电影福利 | 91久久精品一区二区别 | 精品1区| 久草综合网 | 日日操天天操 | 色网站在线观看 | 黄色网在线看 | 成人黄色免费在线视频 | 在线看av的网址 | 在线观看亚洲一区 | 日韩成人一级片 | 红色av社区| 国产亚洲一区二区在线观看 | 电家庭影院午夜 | 九九热精品视频 | 九九热精品免费视频 | 久久国产香蕉视频 | 国产精品国产毛片 | 国产一区二区免费 | 久久国产精品亚州精品毛片 | 欧美精品在线观看 | 国产综合一区二区 | 欧美色图一区 | 免费不卡视频在线观看 | 国产亚洲一区二区在线观看 | 五月婷婷天 | 久久国产视频网 | 天天色天天色 | 欧美一区二区久久久 | 99久久婷婷国产综合精品 | 黄色网址av | av一区二区在线观看 | 亚欧在线观看 | 狠狠伊人|