日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知,如圖,AD為Rt△ABC斜邊BC上的高,點(diǎn)E為DA延長(zhǎng)線上一點(diǎn),連接BE,過(guò)點(diǎn)C作CF⊥BE于點(diǎn)F,交AB、AD于M、N兩點(diǎn).
(1)若線段AM、AN的長(zhǎng)是關(guān)于x的一元二次方程x2-2mx+n2-mn+m2=0的兩個(gè)實(shí)數(shù)根,求證:AM=AN;
(2)若AN=,DN=,求DE的長(zhǎng);
(3)若在(1)的條件下,S△AMN:S△ABE=9:64,且線段BF與EF的長(zhǎng)是關(guān)于y的一元二次方程5y2-16ky+10k2+5=0的兩個(gè)實(shí)數(shù)根,求BC的長(zhǎng).

【答案】分析:(1)根據(jù)根的判別式△=0,判斷出AM=AN,
(2)判斷出△ADC∽△BDA,△ADC∽△BDA,利用相似三角形的性質(zhì)解答,
(3)根據(jù)面積比等于相似比的平方解答.
解答:(1)證明:△=(-2m)2-4(n2-mn+m2)=-(m-2n)2≥0,
∴(m-2n)2≤0,
∴m-2n=0,
∴△=0
∴一元二次方程x2-2mx+n2-mn+m2=0有兩個(gè)相等實(shí)根,
∴AM=AN.

(2)解:∵∠BAC=90°,AD⊥BC,
∴∠ADC=∠ADB=90°,
∠DAC=∠DBA,
∴△ADC∽△BDA,
=
∴AD2=BD•DC,
∵CF⊥BE,
∴∠FCB+∠EBD=90°,
∵∠E+∠EBD=90°,
∴∠E=∠FCB,
∵∠NDC=∠EDB=90°,
∴△EBD∽△CND,
∴△ADC∽△BDA,
=
∴BD•DC=ED•DN,
∴AD2=ED•DN,
∵AN=,DN=
∴AD=DN+AN=3,
∴32=DE,
∴DE=8.

(3)解:由(1)知AM=AN,
∴∠AMN=∠ANM
∵∠AMN+∠CAN=90°,∠DNC+∠NCD=90°,
∴∠ACM=∠NCD
∵∠BMF+∠FBM=90°,∠AMC+∠ACM=90°,
∴∠ACM=∠FBM
由(2)可知∠E=∠FCB,
∴∠ABE=∠E,
∴AB=AE
過(guò)點(diǎn)M作MG⊥AN于點(diǎn)G
由MG∥BD得=
===
=
==
過(guò)點(diǎn)A作AH⊥EF于點(diǎn)H,
由AH∥FN,
==
設(shè)EH=8a,則FH=3a,
∵AE=AB,
∴BH=HE=8a,
∴BF=5a,EF=11a,
由根與系數(shù)關(guān)系得,
解得:a=±
∵a>0,a=
∴BF=
由∠ACM=∠MCB,∠DAC=∠DBA可知△ACN∽△BCM,
==
設(shè)AC=3b,則BC=5b
在Rt△ABC中,有AB=4b.
∴AM=
在Rt△ACM中,有MC=
由△ACM∽△FCB得,∴
∴BC=5.
點(diǎn)評(píng):此題綜合性強(qiáng),難度大,有利于培養(yǎng)同學(xué)們對(duì)知識(shí)綜合運(yùn)用的能力,命題立意:此題綜合考查一元二次方程的根與系數(shù)的關(guān)系,三角形相似的判定及性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,AD為Rt△ABC斜邊BC上的高,點(diǎn)E為DA延長(zhǎng)線上一點(diǎn),連接BE,過(guò)點(diǎn)C作CF⊥BE于點(diǎn)F,交AB、AD于M、N兩點(diǎn).
(1)若線段AM、AN的長(zhǎng)是關(guān)于x的一元二次方程x2-2mx+n2-mn+
5
4
m2=0的兩個(gè)實(shí)數(shù)根,求證:AM=AN;
(2)若AN=
15
8
,DN=
9
8
,求DE的長(zhǎng);
(3)若在(1)的條件下,S△AMN:S△ABE=9:64,且線段BF與EF的長(zhǎng)是關(guān)于y的一元二次方程5y2-16ky+10k2+5=0的兩個(gè)實(shí)數(shù)根,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知,如圖,AD為△ABC的角平分線,∠C=2∠B.求證:AB=AC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,AD為△ABC的內(nèi)角平分線,且AD=AB,CM⊥AD于M.求證:AM=
12
(AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖:AD為△ABC中BC邊上的中線,CE∥AB交AD的延長(zhǎng)線于E.求證:AB=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆北京市(初中部)八年級(jí)上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,AD為△ABC的內(nèi)角平分線,且AD=AB,CM⊥AD于M. 求證:AM=(AB+AC) 。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 日韩中文字幕一区二区 | 日韩精品在线视频 | 久久久久久久久久久免费 | 日韩一二三区 | 日韩成人久久 | 不卡二区 | 黄色综合网 | 久久精品在线视频 | 国产精品美女视频一区二区三区 | 亚洲女人天堂成人av在线 | 久久精品伊人 | 精品久久中文字幕 | 97爱爱视频 | 精品久久久久久久久久久久久 | 黄色一级毛片 | 二区在线观看 | 日本欧美一区 | 日韩欧美国产精品一区二区三区 | 久久精品久久久久久久 | 亚洲精品久久久久久久久久久久久 | 国产一国产寡妇一级毛片 | 亚洲精品www | 欧美激情精品久久久久久变态 | 精品91久久久 | 免费aaa视频| 免费国产黄网站在线观看视频 | 精品一区91 | 国产成人精品免费视频大全 | 日韩欧美网 | eee女女色www网站 | 久久精品电影 | av在线一区二区 | 国产依人在线 | 欧美一区二区激情三区 | 精品成人佐山爱一区二区 | 婷婷久久综合 | 欧美精品一区二区三区在线 | 久久成人综合网 | 亚洲一区二区在线视频 | 日本成人一区二区三区 | 91人人射|