日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,已知拋物線y=a(x-1)2+3(a≠0)經過點A(-2,0),拋物線的頂點為D,過O作射線OM∥AD.過頂點平行于x軸的直線交射線OM于點C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動點P從點O出發,以每秒1個長度單位的速度沿射線OM運動,設點P運動的時間為t(s).問當t為何值時,四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動點P和動點Q分別從點O和點B同時出發,分別以每秒1個長度單位和2個長度單位的速度沿OC和BO運動,當其中一個點停止運動時另一個點也隨之停止運動.設它們的運動的時間為t(s),連接PQ,當t為何值時,四邊形BCPQ的面積最小?并求出最小值及此時PQ的長.

【答案】分析:(1)將A的坐標代入拋物線y=a(x-1)2+3(a≠0)可得a的值,即可得到拋物線的解析式;
(2)易得D的坐標,過D作DN⊥OB于N;進而可得DN、AN、AD的長,根據平行四邊形,直角梯形,等腰梯形的性質,用t將其中的關系表示出來,并求解可得答案;
(3)根據(2)的結論,易得△OCB是等邊三角形,可得BQ、PE關于t的關系式,將四邊形的面積用t表示出來,進而分析可得最小值及此時t的值,進而可求得PQ的長.
解答:解:(1)∵拋物線y=a(x-1)2+3(a≠0)經過點A(-2,0),
∴0=9a+3
∴a=-(1分)
∴二次函數的解析式為:y=-x2+x+;(3分)

(2)①∵D為拋物線的頂點,
∴D(1,3),
過D作DN⊥OB于N,則DN=3,AN=3,
∴AD==6,
∴∠DAO=60°.(4分)
∵OM∥AD,
①當AD=OP時,四邊形DAOP是平行四邊形,
∴OP=6,
∴t=6(s).(5分)
②當DP⊥OM時,四邊形DAOP是直角梯形,
過O作OH⊥AD于H,AO=2,則AH=1(如果沒求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1)
∴OP=DH=5,t=5(s)(6分)
③當PD=OA時,四邊形DAOP是等腰梯形,
易證:△AOH≌△DPP′,
∴AH=CP,
∴OP=AD-2AH=6-2=4,
∴t=4(s)綜上所述:當t=6、5、4時,對應四邊形分別是平行四邊形、直角梯形、等腰梯形;(7分)

(3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等邊三角形則OB=OC=AD=6,OP=t,BQ=2t,
∴OQ=6-2t(0<t<3)過P作PE⊥OQ于E,
則PE=t(8分)
∴SBCPQ=×6×3×(6-2t)×t
=(t-2+(9分)
當t=時,四邊形BCPQ的面積最小值為.(10分)
∴此時OQ=3,OP=,OE=
∴QE=3-=,PE=
∴PQ=.(11分)
點評:本題考查學生將二次函數的圖象與解析式相結合處理問題、解決問題的能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)精英家教網、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發,以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产日韩高清在线 | 亚洲精品久久久久久久久久久 | 成人国产精品久久 | 一区二区免费 | 成人免费视频网站在线观看 | 久久精品99国产精品酒店日本 | 欧美久久一区二区三区 | 银杏成人影院在线观看 | 日批免费网站 | 亚洲h在线观看 | 一区二区三区国产亚洲网站 | 一区二区日韩 | 天天狠天天天天透在线 | 国产老女人精品毛片久久 | 免费一级黄色电影 | 黄视频网站免费观看 | 精品成人一区二区 | 欧美一区二区在线观看 | 天天天色综合 | 国产欧美一区二区精品久久 | 奇米色欧美一区二区三区 | 亚洲视频三区 | 婷婷国产成人精品视频 | 99热精品在线 | 日韩精品一区二区三区在线 | 中文字幕免费在线观看 | 日本一区二区三区四区 | 国产一级片播放 | 亚洲欧美精品 | 色黄网站| 欧美精品一区二区三区涩爱蜜 | 人人艹人人 | 日韩视频一区 | 在线日韩精品视频 | 亚洲高清在线观看 | 麻豆资源| 国产精品国产成人国产三级 | 少妇一区二区三区免费观看 | 国产l精品国产亚洲区久久 国产suv精品一区 | 久久国产综合 | 91精品综合久久久久久五月天 |