日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,F(xiàn)是CE上的一點,且FC=FA,延長AF交⊙O于G,連接CG.
(1)試判斷△ACG的形狀(按邊分類),并證明你的結(jié)論;
(2)若⊙O的半徑為5,OE=2,求CF•CD之值.

【答案】分析:(1)△ACG是等腰三角形,只要證明∠G=∠CAG,可以轉(zhuǎn)化為證明=即可.
(2)連接AD,BC,易證△ACF∽△DCA,得到AC:CD=CF:AC,即AC2=CF•CD.再根據(jù)垂徑定理得到AC2=AE2+CE2就可以求出.
解答:解:(1)△ACG是等腰三角形.
證明如下:
∵CD⊥AB,∴.(1分)
∴∠G=∠ACD,(2分)
∵FC=FA,
∴∠ACD=∠CAG,(3分)
∴∠G=∠CAG,
∴△ACG是等腰三角形.(4分)

(2)連接AD,BC,(5分)
由(1)知
∴AC=AD.
∴∠D=∠ACD,(6分)
∴∠D=∠G=∠CAG,
又∵∠ACF=∠DCA,
∴△ACF∽△DCA,(7分)
∴AC:CD=CF:AC,
即AC2=CF•CD,(8分)
∵CD⊥AB,(9分)
∴AC2=AE2+CE2=(5-2)2+(52-22)=30.(11分)
∴CF•CD=30.(12分)
點評:證明等腰三角形可以依據(jù)等角對等角證明;第二問中利用了相似三角形的性質(zhì)和垂徑定理的推論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 免费观看一级特黄欧美大片 | 国产精品国产精品国产专区不卡 | 中文字幕精品三区 | 国产美女精品视频免费观看 | 国产精品二区一区 | 成人天堂噜噜噜 | 综合久久综合久久 | 欧美中文字幕 | 91成人免费看片 | 亚洲一级黄色片子 | 国产成人精品一区二区三区视频 | 日韩欧美亚洲 | 成人影院网站ww555久久精品 | 欧美第一区 | 国产成人精品一区二区三区 | 91精品久久久久久久久久久久久久久 | 精品一区二区三区三区 | 欧美成人猛片aaaaaaa | 日韩成人一区二区 | 久久精美视频 | 一级片的网址 | 久久久久久久久久影院 | 97网站| 亚洲一区二区三区视频 | 国产精品久久久久久久裸模 | 欧美精品在线一区 | 看免费的毛片 | 国产痴汉av久久精品 | 在线免费中文字幕 | 日韩a视频| 亚洲精品女人久久 | 日韩成人国产 | 国产精品第一国产精品 | 奇米色欧美一区二区三区 | 免费观看亚洲 | 日韩欧美在线一区二区 | a级在线观看免费 | 九九久久精品 | 欧美国产日韩在线 | 久久久久久亚洲精品视频 | 亚洲国产精品成人 |