【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉△ABF的位置.
(1)旋轉中心是點 ,旋轉角度是 度;
(2)若連結EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
【答案】(1)A、90;(2)等腰直角;(3)AE=.
【解析】試題分析:(1)根據旋轉變換的定義,即可解決問題;
(2))根據旋轉變換的定義,即可解決問題;
(3)根據旋轉變換的定義得到△ADE≌△ABF,進而得到S四邊形AECF=S正方形ABCD=25,求出AD的長度,即可解決問題..
試題解析:(1)如圖,由題意得:旋轉中心是點A,旋轉角度是90度,
故答案為A、90;
(2)由題意得:AF=AE,∠EAF=90°,
∴△AEF為等腰直角三角形.
故答案為:等腰直角;
(3)由題意得:△ADE≌△ABF,
∴S四邊形AECF=S正方形ABCD=25,
∴AD=5,而∠D=90°,DE=2,
∴AE= .
科目:初中數學 來源: 題型:
【題目】如圖,已知⊙O中,AB為弦,直線PO交⊙O于點M、N,PO⊥AB于C,過點B作直徑BD,連接AD、BM、AP.
(1)求證:PM∥AD;
(2)若∠BAP=2∠M,求證:PA是⊙O的切線;
(3)若AD=6,tan∠M=,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=900,AD是∠BAC的角分線.
(1)以AB上的一點O為圓心,AD為弦在圖中作出⊙O.(不寫作法,保留作圖痕跡);
(2)試判斷直線BC與⊙O的位置關系,并證明你的結論;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司計劃購買、
兩種型號的機器人搬運材料,已知
型機器人比
型機器人每小時多搬運
材料,且
型機器人搬運
的材料所用的時間與
型機器人搬運
材料所用的時間相同.
(1)求、
兩種型號的機器人每小時分別搬運多少材料?
(2)該公司計劃采購、
兩種型號的機器人共
臺,要求每小時搬運的材料不得少于
,則至少購進
型機器人多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點C順時針旋轉得到,其中點A′與點A是對應點,點B′與點B是對應點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 4 B. 6 C. 3
D. 3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) |
|
銷售玩具獲得利潤w(元) |
|
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)問條件下,若玩具廠規定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有兩個不相等的實數根x1,x2.
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據某網站調查,2014年網民們最關注的熱點話題分別有:消費、教育、環保、反腐及其他共五類.根據調查的部分相關數據,繪制的統計圖表如下:
根據所給信息解答下列問題:
(1)請補全條形統計圖并在圖中標明相應數據;
(2)若菏澤市約有880萬人口,請你估計最關注環保問題的人數約為多少萬人?
(3)在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現準備從這四人中隨機抽取兩人進行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com