【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)
和
,給出如下定義:若
上存在一點(diǎn)
不與
重合,使點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)
在
上,則稱
為
的反射點(diǎn).下圖為
的反射點(diǎn)
的示意圖.
(1)已知點(diǎn)的坐標(biāo)為
,
的半徑為
,
①在點(diǎn),
,
中,
的反射點(diǎn)是____________;
②點(diǎn)在直線
上,若
為
的反射點(diǎn),求點(diǎn)
的橫坐標(biāo)的取值范圍;
(2)的圓心在
軸上,半徑為
,
軸上存在點(diǎn)
是
的反射點(diǎn),直接寫出圓心
的橫坐標(biāo)
的取值范圍.
【答案】(1)①,
;②點(diǎn)
的橫坐標(biāo)
的取值范圍是
,或
;(2)圓心
的橫坐標(biāo)
的取值范圍是
.
【解析】
(1)①連接MN,過(guò)原點(diǎn)O作MN的垂線,必與有交點(diǎn),即可得出結(jié)論.
②直線與以原點(diǎn)為圓心,半徑為1和3的兩個(gè)圓的交點(diǎn)從左至右依次為
,
,
,
,過(guò)點(diǎn)
作
軸于點(diǎn)
,分別求出點(diǎn)E,F,G,H的坐標(biāo),
為
的反射點(diǎn),則
上存在一點(diǎn)T,使點(diǎn)P關(guān)于直線OT的對(duì)稱點(diǎn)在
上,則
,由
,則
,即可求出答案.
(2)根據(jù)反射點(diǎn)的定義求解即可.
解(1)①連接MN,過(guò)原點(diǎn)O作MN的垂線,必與有交點(diǎn),
都是
的反射點(diǎn).
②設(shè)直線與以原點(diǎn)為圓心,半徑為1和3的兩個(gè)圓的交點(diǎn)從左至右依次為
,
,
,
,過(guò)點(diǎn)
作
軸于點(diǎn)
,如圖.
可求得點(diǎn)的橫坐標(biāo)為
.
同理可求得點(diǎn),
,
的橫坐標(biāo)分別為
,
,
.
點(diǎn)是
的反射點(diǎn),則
上存在一點(diǎn)
,使點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)
在
上,則
.
∵,∴
.
反之,若,
上存在點(diǎn)
,使得
,故線段
的垂直平分線經(jīng)過(guò)原點(diǎn),且與
相交.因此點(diǎn)
是
的反射點(diǎn).
∴點(diǎn)的橫坐標(biāo)
的取值范圍是
,或
.
(2)圓心的橫坐標(biāo)
的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知AB⊥BC于點(diǎn)B,底座BC的長(zhǎng)為1米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點(diǎn)E,已知AH長(zhǎng)米,HF長(zhǎng)
米,HE長(zhǎng)1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:(1)如圖①,在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,則線段BC,DC,EC之間滿足的等量關(guān)系式為 ;
探索:(2)如圖②,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
應(yīng)用:(3)如圖③,在四邊形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,直線y=與x軸、y軸分別交于點(diǎn)B,C,拋物線y=
過(guò)B,C兩點(diǎn),且與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,連接AC.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)D(與點(diǎn)A不重合),使得S△DBC=S△ABC,若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)有寬度為2,長(zhǎng)度足夠長(zhǎng)的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和點(diǎn)Q,交直線CB于點(diǎn)M和點(diǎn)N,在矩形平移過(guò)程中,當(dāng)以點(diǎn)P,Q,M,N為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是
的直徑,弦
于點(diǎn)
,過(guò)點(diǎn)
作
的切線交
的延長(zhǎng)線于點(diǎn)
.
(1)已知,求
的大小(用含
的式子表示);
(2)取的中點(diǎn)
,連接
,請(qǐng)補(bǔ)全圖形;若
,
,求
的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,認(rèn)真觀察下面這些算式,并結(jié)合你發(fā)現(xiàn)的規(guī)律,完成下列問(wèn)題:
(1)請(qǐng)寫出:
算式⑤ ;
算式⑥ ;
(2)上述算式的規(guī)律可以用文字概括為:“兩個(gè)連續(xù)奇數(shù)的平方差能被8整除”,如果設(shè)兩個(gè)連續(xù)奇數(shù)分別為和
(
為整數(shù)),請(qǐng)說(shuō)明這個(gè)規(guī)律是成立的;
(3)你認(rèn)為“兩個(gè)連續(xù)偶數(shù)的平方差能被8整除”這個(gè)說(shuō)法是否也成立呢?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形和正六邊形
邊長(zhǎng)均為1,如圖所示,把正方形放置在正六邊形外,使
邊與
邊重合,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)
逆時(shí)針旋轉(zhuǎn),使
邊與
邊重合,完成第一次旋轉(zhuǎn)再繞點(diǎn)
逆時(shí)針旋轉(zhuǎn),使
邊與
邊重合,完成第二次旋轉(zhuǎn);此時(shí)點(diǎn)
經(jīng)過(guò)路徑的長(zhǎng)為_________:若按此方式旋轉(zhuǎn),共完成六次,在這個(gè)過(guò)程中,點(diǎn)
之間距離的最大值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】知識(shí)背景
當(dāng)a>0且x>0時(shí),因?yàn)椋?/span>﹣
)2≥0,所以x﹣2
+
≥0,從而x+
(當(dāng)x=
時(shí)取等號(hào)).
設(shè)函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=
時(shí),該函數(shù)有最小值為2
.
應(yīng)用舉例
已知函數(shù)為y1=x(x>0)與函數(shù)y2=(x>0),則當(dāng)x=
=2時(shí),y1+y2=x+
有最小值為2
=4.
解決問(wèn)題
(1)已知函數(shù)為y1=x+3(x>﹣3)與函數(shù)y2=(x+3)2+9(x>﹣3),當(dāng)x取何值時(shí),有最小值?最小值是多少?
(2)已知某設(shè)備租賃使用成本包含以下三部分:一是設(shè)備的安裝調(diào)試費(fèi)用,共490元;二是設(shè)備的租賃使用費(fèi)用,每天200元;三是設(shè)備的折舊費(fèi)用,它與使用天數(shù)的平方成正比,比例系數(shù)為0.001.若設(shè)該設(shè)備的租賃使用天數(shù)為x天,則當(dāng)x取何值時(shí),該設(shè)備平均每天的租貨使用成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知邊長(zhǎng)為4的正方形ABCD,E是BC邊上一動(dòng)點(diǎn)(與B、C不重合),連結(jié)AE,作EF⊥AE交∠BCD的外角平分線于F,設(shè)BE=x,△ECF的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com