日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,AB是△ABC的外接圓⊙O的直徑,D是⊙O上的一點,DE⊥AB于點E,且DE的延長線分別交AC、⊙O、BC的延長線于F、M、G.
(1)求證:AE•BE=EF•EG;
(2)連接BD,若BD⊥BC,且EF=MF=2,求AE和MG的長.

【答案】分析:(1)本題實際求的是△AEF和△EGB相似,這兩個三角形中已知的條件有一組直角,只要再得出一組對應的角相等即可得出相似的結論.可在Rt△AEF和Rt△CGF中,根據對頂角和等角的余角相等來得出∠A=∠G,因此就構成了兩三角形相似的條件,兩三角形相似后即可得出所求的比例關系;
(2)求AE可通過相似三角形來求解.根據垂徑定理我們可得出DE的長,根據∠ACB=∠DBC=∠CBD=90°,那么∠DAF=90°,因此不難得出△ADE和△ADE相似,有了DE,EF的長,即可通過相似得出的DE、AE、EF的比例關系求出AE的長,下面求MG的長,關鍵是求出EG的長,根據(1)的比例關系求EG就要先求出BE的長,我們已知了DE、EM、AE的長,可根據相交弦定理求出EB的長,也就能求出EG的長了,那么MG=EG-EM就求出MG的長了.
解答:(1)證明:∵AB是⊙O的直徑,DE⊥AB
∴∠ACB=∠BEG=∠AEF=90°
∴∠G+∠B=∠A+∠B=90°
即∠G=∠A
∴Rt△AEF∽Rt△GEB
,即AE•BE=EF•EG;

(2)解:∵DE⊥AB,
∴DE=EM=4
連接AD,∵AB是⊙O的直徑,BD⊥BC
∴∠ACB=∠ADB=∠DBC=90°
∴∠DAF=90°
由Rt△AEF∽Rt△ADE可得AE2=DE•EF
∴AE=2
由相交弦定理可得DE•EM=AE•BE
∴EF•EG=DE•EM
∴EG===8
∴MG=EG-EM=8-4=4.
點評:本題主要考查了相似三角形的判定和性質,相交弦定理等知識點的綜合應用,根據相似三角形來得出線段的比例關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、如圖,AB是△ABC外接圓O的直徑,D為⊙O上一點,且DE⊥CD交BC于E,求證:EB•CD=DE•AC.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,AB是△ABC的外接圓⊙O的直徑,D是⊙O上的一點,DE⊥AB于點E,且DE的延長線分別交AC、⊙O、BC的延長線于F、M、G.
(1)求證:AE•BE=EF•EG;
(2)連接BD,若BD⊥BC,且EF=MF=2,求AE和MG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,AB是△ABC外接圓⊙O的直徑,D是AB延長線上一點,且BD=
12
AB,∠A=30°,CE⊥AB于E,過C的直徑交⊙O于點F,連接CD、BF、EF.
(1)求證:CD是⊙O的切線;
(2)求:tan∠BFE的值.

查看答案和解析>>

科目:初中數學 來源:第5章《中心對稱圖形(二)》中考題集(20):5.3 圓周角(解析版) 題型:解答題

如圖,AB是△ABC的外接圓⊙O的直徑,D是⊙O上的一點,DE⊥AB于點E,且DE的延長線分別交AC、⊙O、BC的延長線于F、M、G.
(1)求證:AE•BE=EF•EG;
(2)連接BD,若BD⊥BC,且EF=MF=2,求AE和MG的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩无| 久久久国产一区二区三区 | 精品亚洲一区二区三区在线观看 | 国产精品影院在线观看 | 荡女妇边被c边呻吟视频 | 日韩一区二区精品 | 亚洲成人av电影 | 亚洲天堂一区 | 中文字幕av一区二区 | 日韩电影免费观 | 三级视频在线观看 | 久久99国产精品久久99大师 | 久久精品播放 | 黄色毛片网站在线观看 | 久久色视频 | 国产一区二区视频精品 | 欧美日韩精品一区二区在线播放 | 在线观看亚洲一区 | 一区二区三区免费 | 免费国产视频在线观看 | 国产一区二区在线观看视频 | 香蕉在线视频免费 | 国产一区久久 | 99久久久无码国产精品 | 日韩一区高清视频 | 精品久久久久久久久久久久久久 | a免费在线观看 | 日本a在线 | 中文字幕乱码一区二区三区 | 成人在线视频网 | 日韩精品久久久久久 | 国产中文在线 | 日韩天堂 | 一区二区免费 | 日本黄色电影网站 | 91久久国产综合久久 | 蜜臀在线视频 | 国产精品美女视频 | 91av国产视频 | 视频在线亚洲 | 日韩av一区在线观看 |