日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】問題引入:

(1)如圖①,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC=(用α表示);如圖②,∠CBO= ∠ABC,∠BCO= ∠ACB,∠A=α,則∠BOC=(用α表示)拓展研究:
(2)如圖③,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=(用α表示),并說明理由.
類比研究:
(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO= ∠DBC,∠BCO= ∠ECB,∠A=α,請猜想∠BOC=

【答案】
(1)90°+ α;120°+ α
(2)120°﹣ α
(3)
【解析】解:(1)如圖①,∵∠ABC與∠ACB的平分線相交于點O,∴∠OBC= ∠ABC,∠OCB= ∠ACB,∴∠OBC+∠OCB= (∠ABC+∠ACB),
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣ (∠ABC+∠ACB)=180°﹣ (180°﹣∠A)=90°+ ∠A=90°+ α;
如圖②,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣ (∠ABC+∠ACB)=180°﹣ (180°﹣∠A)=120°+ ∠A=120°+ α;(2)如圖③,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠DBC+∠ECB)=180°﹣ (∠A+∠ACB+∠A+ABC)=180°﹣ (∠A+180°)=120°﹣ α;(3)在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠DBC+∠ECB)=180°﹣ (∠A+∠ACB+∠A+ABC)=180°﹣ (∠A+180°)= α.
所以答案是90°+ α,120°+ α;120°﹣ α; α.

【考點精析】根據題目的已知條件,利用角的運算的相關知識可以得到問題的答案,需要掌握角之間可以進行加減運算;一個角可以用其他角的和或差來表示.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AD是△ABC的中線,tanB= ,cosC= ,AC= .求:
(1)BC的長;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】11分)陽泉同學參加周末社會實踐活動,到富樂花鄉蔬菜大棚中收集到20株西紅柿秧上小西紅柿的個數:32 39 45 55 60 54 60 28 56 41 51 36 44 46 40 53 37 47 45 46

1)前10株西紅柿秧上小西紅柿個數的平均數是 ,中位數是 ,眾數是

2)若對這20個數按組距8進行分組,請補全頻數分布表及頻數分布直方圖:

個數分組

28≤x36

36≤x44

44≤x52

52≤x60

60≤x68

頻數

2




2

3)通過頻數分布直方圖試分析此大棚中西紅柿的長勢。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD的外側,作兩個等邊三角形ADE和DCF,連接AF,BE

(1)請判斷:AF與BE的數量關系是 , 位置關系是 .
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變為“兩個等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予說明
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】公園內兩條小河MO、NOO處匯合,如圖所示,兩河形成的平地上要建一個小百貨店,使小百貨店到兩岸邊距離相等,到兩河交匯處距離300米,百貨店的位置該怎樣確定?請你按10000:1的比例,在圖中確定百貨店的位置,并估算一下,它到河邊的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3 時,求線段DH的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F,且∠MAN始終保持45°不變.

(1)求證: = ;
(2)求證:AF⊥FM;
(3)請探索:在∠MAN的旋轉過程中,當∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結論,并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD內作∠EAF=45°,AE交BC于點E,AF交CD于點F,連接EF,過點A作AH⊥EF,垂足為H.

(1)如圖2,將△ADF繞點A順時針旋轉90°得到△ABG.
①求證:△AGE≌△AFE;
②若BE=2,DF=3,求AH的長.
(2)如圖3,連接BD交AE于點M,交AF于點N.請探究并猜想:線段BM,MN,ND之間有什么數量關系?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,B=30°,AD平分CAB.

(1)求CAD的度數;

(2)延長AC至E,使CE=AC,求證:DA=DE.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产九色视频 | 国产亚洲一区二区三区在线 | 三级网站视频 | 国产va| 国产日韩精品视频 | 一区二区免费 | 国产精品久久婷婷六月丁香 | 成人在线免费 | 亚洲欧美日韩高清 | 久久久成人精品 | 国产精品片一区二区三区 | 亚洲电影一区二区三区 | 中文字幕亚洲第一 | 国产福利一区二区三区在线观看 | 成人av免费在线观看 | 欧美成人免费一级人片100 | 精品国产成人 | 免费视频一二三区 | 91精品国产乱码久久久久久久久 | 亚洲人免费| 成人免费视频在线观看 | 2019天天干| 免费av在线网站 | 欧美一区二区视频免费观看 | 黄色av网站在线免费观看 | 欧美日韩高清丝袜 | 日韩视频免费在线观看 | 黄色毛片看看 | 美女福利视频网站 | 久久亚洲一区 | 妞干网免费在线视频 | 久久精品系列 | 成人日韩 | 日韩精品一区二区三区中文在线 | 欧美日韩中文 | 99re免费视频精品全部 | 久久韩日 | 国产精品一区二区三区在线播放 | 国产精品视频一区二区三区, | av高清在线免费观看 | 中文字幕在线观看av |