【題目】為了慶祝即將到來的“五四”青年節,某校舉行了書法比賽,賽后隨機抽查部分參賽同學的成績,并制作成圖表如下:
分數段 | 頻數 | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請根據以上圖表提供的信息,解答下列問題:
(1)這次隨機抽查了 名學生;表中的數m= ,n= ;
(2)請在圖中補全頻數分布直方圖;
(3)若繪制扇形統計圖,分數段60≤x<70所對應扇形的圓心角的度數是 ;
(4)全校共有600名學生參加比賽,估計該校成績80≤x<100范圍內的學生有多少人?
【答案】(1)200、90、0.3;(2)詳見解析;(3)54°;(4)240.
【解析】
(1)根據60≤x<70的頻數及其頻率求得總人數,進而計算可得m、n的值;(2)根據(1)的結果,可以補全直方圖;(3)用360°乘以樣本中分數段60≤x<70的頻率即可得;(4)總人數乘以樣本中成績80≤x<100范圍內的學生人數所占比例.
(1)本次調查的總人數為30÷0.15=200人,
則m=200×0.45=90,n=60÷200=0.3,
故答案為:200、90、0.3;
(2)補全頻數分布直方圖如下:
(3)若繪制扇形統計圖,分數段60≤x<70所對應扇形的圓心角的度數是360°×0.15=54°,
故答案為:54°;
(4)600×=240,
答:估計該校成績80≤x<100范圍內的學生有240人.
科目:初中數學 來源: 題型:
【題目】下列命題中是真命題的是( )
A. 兩條對角線相等的四邊形是矩形;
B. 有一條對角線平分一個內角的平行四邊形為菱形;
C. 對角線互相垂直且相等的四邊形是正方形;
D. 依次連結四邊形各邊的中點,所得四邊形是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).
(1)四邊形EFGH的形狀是_____,證明你的結論;
(2)當四邊形ABCD的對角線滿足_____條件時,四邊形EFGH是矩形(不證明)
(3)你學過的哪種特殊四邊形的中點四邊形是矩形?_____(不證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為深化義務教育課程改革,某校積極開展拓展性課程建設,計劃開設藝術、體育、勞技、文學等多個類別的拓展性課程,要求每一位學生都自主選擇一個類別的拓展性課程.為了了解學生選擇拓展性課程的情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如下統計圖(部分信息未給出):
根據統計圖中的信息,解答下列問題:
()求本次被調查的學生人數.
()將條形統計圖補充完整.
()若該校共有
名學生,請估計全校選擇體育類的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明統計了他家今年5月份打電話的次數及通話時間,并列出了頻數分布表:
通話時間x/分鐘 | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 |
頻數(通話次數) | 20 | 16 | 9 | 5 |
則5月份通話次數中,通話時間不超過15分鐘的所占百分比是( )
A. 10% B. 40% C. 50% D. 90%
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖△ABC中,AB為⊙O的直徑,BC切⊙O于點B,AC交⊙O與點F,點E在AC上,且∠EBC= ∠BAC,BE交⊙O于點D.
(1)求證:AB=AE;
(2)若AB=10,cos∠EBC= ,求線段BE和BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了慶祝即將到來的“五四”青年節,某校舉行了書法比賽,賽后隨機抽查部分參賽同學的成績,并制作成圖表如下:
分數段 | 頻數 | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請根據以上圖表提供的信息,解答下列問題:
(1)這次隨機抽查了 名學生;表中的數m= ,n= ;
(2)請在圖中補全頻數分布直方圖;
(3)若繪制扇形統計圖,分數段60≤x<70所對應扇形的圓心角的度數是 ;
(4)全校共有600名學生參加比賽,估計該校成績80≤x<100范圍內的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,A(a,0),B(0,b),a,b滿足=0,C為AB的中點,P是線段AB上一動點,D是x軸正半軸上一點,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數
(2)當點P運動時,PE的長是否變化?若變化,請說明理由;若不變,請求PE的長
(3)若∠OPD=45度,求點D的坐標
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD與正五邊形EFGHM的邊長相等,初始如圖所示,將正方形繞點F順時針旋轉使得BC與FG重合,再將正方形繞點G順時針旋轉使得CD與GH重合…按這樣的方式將正方形依次繞點H、M、E旋轉后,正方形中與EF重合的是( )
A.AB
B.BC
C.CD
D.DA
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com