已知函數與函數
的圖象大致如圖.若
試確定自變量
的取值范圍.
科目:初中數學 來源: 題型:解答題
如圖①,在平行四邊形ABCD中,AB=13,BC=50,BC邊上的高為12.點P從點B出發,沿B﹣A﹣D﹣A運動,沿B﹣A運動時的速度為每秒13個單位長度,沿A﹣D﹣A運動時的速度為每秒8個單位長度.點Q從點B出發沿BC方向運動,速度為每秒5個單位長度.P、Q兩點同時出發,當點Q到達點C時,P、Q兩點同時停止運動.設點P的運動時間為t(秒).連結PQ.
(1)當點P沿A﹣D﹣A運動時,求AP的長(用含t的代數式表示).
(2)連結AQ,在點P沿B﹣A﹣D運動過程中,當點P與點B、點A不重合時,記△APQ的面積為S.求S與t之間的函數關系式.
(3)過點Q作QR∥AB,交AD于點R,連結BR,如圖②.在點P沿B﹣A﹣D運動過程中,當線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時t的值.
(4)設點C、D關于直線PQ的對稱點分別為C′、D′,直接寫出C′D′∥BC時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產A、B兩種產品共40件.生產每件A種產品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產每件B種產品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產A種產品x件.
(1)完成下表
| 甲(kg) | 乙(kg) | 件數(件) |
A | | 5x | x |
B | 4(40-x) | | 40-x |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
甲、乙兩人同時從相距90千米的A地前往B地,甲乘汽車,乙騎摩托車,甲到達B地停留半小時后返回A地.如果是他們離A地的距離y(千米)與時間x(時)之間的函數關系圖象.
(1)求甲從B地返回A地的過程中,y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)若乙出發后2小時和甲相遇,求乙從A地到B地用了多長時間?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,一次函數y1=x+1的圖象與反比例函數y2=(k為常數,且k≠0)的圖象都經過點A(m,2).
(1)求點A的坐標及反比例函數的表達式;
(2)結合圖象直接比較:當x>0時,y1與y2的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
在國道202公路改建工程中,某路段長4000米,由甲乙兩個工程隊擬在30天內(含30天)合作完成.已知兩個工程隊各有10名工人(設甲乙兩個工程隊的工人全部參與生產,甲工程隊每天的工作量相同,乙工程隊每人每天的工作量相同).甲工程隊1天、乙工程2天共修路200米;甲工程隊2天、乙工程隊3天共修路350米.
(1)試問甲乙兩個工程隊每天分別修路多少米?
(2)甲乙兩個工程隊施工10天后,由于工作需要需從甲隊抽調m人去學習新技術,總部要求在規定時間內完成,請問甲隊可以抽調多少人?
(3)已知甲工程隊每天的施工費用為0.6萬元,乙工程隊每天的施工費用為0.35萬元,要使該工程的施工費用最低,甲乙兩隊各做多少天?最低費用為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知一次函數y=kx+b與y=mx+n的圖象如圖所示.
(1)寫出關于x,y的方程組的解;
(2)若0<kx+b<mx+n,根據圖像寫出x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
小亮家距離學校8千米,昨天早晨,小亮騎車上學途中,自行車“爆胎”,恰好路邊有“自行車”維修部,幾分鐘后車修好了,為了不遲到,他加快了騎車到校的速度.回校后,小亮根據這段經歷畫出如下圖象.該圖象描繪了小亮行的路程S與他所用的時間t之間的關系.請根據圖象,解答下列問題:
(1)小亮行了多少千米時,自行車“爆胎”?修車用了幾分鐘?
(2)小亮到校路上共用了多少時間?
(3)如果自行車沒有“爆胎”,一直用修車前的速度行駛,那么他比實際情況早到或晚到學校多少分鐘(精確到0.1)?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com