【題目】如圖,△ABC 中,∠B=60°,∠C=80°,點D,E分別在線段AB,BC 上, 將△BDE 沿直線DE翻折,使B落在B′ 處, B′ D, B′E分別交AC于F,G. 若∠ADF=70°,則∠CGE 的度數為______.
【答案】500
【解析】
連接BB',由翻折變換的性質得:∠ABC=∠DB'E=60°,再根據三角形外角性質,即可得到∠ADF+∠CEG=60°+60°=120°,進而得出∠CEG=50°,再根據三角形內角和定理,即可得到△CEG中,∠CGE=180°-50°-80°=50°.
如圖,連接BB',
由翻折變換的性質得:∠ABC=∠DB'E=60°,
∵∠ADF是△BDB'的外角,∠CEG是△BEB'的外角,
∴∠ADF+∠CEG=60°+60°=120°,
又∵∠ADF=70°,
∴∠CEG=50°,
又∵∠C=80°,
∴△CEG中,∠CGE=180°-50°-80°=50°,
故答案為:50°.
科目:初中數學 來源: 題型:
【題目】已知反比例函數(k為常數,k≠1).
(Ⅰ)其圖象與正比例函數y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大小.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一根起點為1的數軸,現有同學將它彎折,彎折后虛線上第一行的數是1,第二行的數是13,第三行的數是43,…,依此規律,第五行的數是( )
A. 183 B. 157 C. 133 D. 91
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某物流公司承接A、B兩種貨物運輸業務,已知3月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元;4月份由于工人工資上漲,運費單價上漲情況為:A貨物運費單價增加了40%,B貨物運費單價上漲到40元/噸;該物流公司4月承接的A種貨物和B種數量與3月份相同,4月份共收取運費13000元.試求該物流公司月運輸A、B兩種貨物各多少噸?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,填空:
(1)若∠4=∠3,則____∥_____,理由是______;
(2)若∠2=∠E,則____∥___,理由是____;
(3)若∠A=∠ABE=180°,則____∥___,理由是____;
(4)若∠2=∠____,則DA∥EB,理由是____;
(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①所示,已知,BC∥OA,∠B=∠A=100°,試解答下列問題:
(1)試說明:OB∥AC;
(2)如圖②,若點E.F在BC上,且∠FOC=∠AOC,OE平分∠BOF.試求∠EOC的度數;
(3)在(2)小題的條件下,若左右平行移動AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發生變化?若變化,試說明理由;若不變,求出這個比值.
(4)在(3)小題的條件下,當∠OEB=∠OCA時,試求∠OCA的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知點
,
.若平移點
到點
,使以點
,
,
,
為頂點的四邊形是菱形,則正確的平移方法是( )
A.向左平移1個單位,再向下平移1個單位
B.向左平移 個單位,再向上平移1個單位
C.向右平移 個單位,再向上平移1個單位
D.向右平移1個單位,再向上平移1個單位
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:通過小學的學習我們知道,分數可分為“真分數”和“假分數”,而假分數都可化為常分數,如: =
=2+
=2
.我們定義:在分式中,對于只含有一個字母的分式,當分子的次數大于或等于分母的次數時,我們稱之為“假分式”;當分子的次數小于分母的次數時,我們稱之為“真分式”.如
,
這樣的分式就是假分式;再如:
,
這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如:
=1-
;
解決下列問題:
(1)分式 是 分式(填“真分式”或“假分式”);
(2) 將假分式化為帶分式;
(3)如果 x 為整數,分式 的值為整數,求所有符合條件的 x 的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com