日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,連接BC.

(1)求A,B,C三點的坐標;
(2)若點P為線段BC上一點(不與B,C重合),PM∥y軸,且PM交拋物線于點M,交x軸于點N,當△BCM的面積最大時,求△BPN的周長;
(3)在(2)的條件下,當△BCM的面積最大時,在拋物線的對稱軸上存在一點Q,使得△CNQ為直角三角形,求點Q的坐標.

【答案】
(1)解:由拋物線的解析式y=﹣x2+2x+3,

∴C(0,3),

令y=0,﹣x2+2x+3=0,解得x=3或x=﹣1;

∴A(﹣1,0),B(3,0).


(2)解:設直線BC的解析式為:y=kx+b,則有:

,解得

∴直線BC的解析式為:y=﹣x+3.

設P(x,﹣x+3),則M(x,﹣x2+2x+3),

∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.

∴SBCM=SPMC+SPMB= PM(xP﹣xC)+ PM(xB﹣xP)= PM(xB﹣xC)= PM.

∴SBCM= (﹣x2+3x)=﹣ (x﹣ 2+

∴當x= 時,△BCM的面積最大.

此時P( ),∴PN=ON=

∴BN=OB﹣ON=3﹣ =

在Rt△BPN中,由勾股定理得:PB=

CBCN=BN+PN+PB=3+

∴當△BCM的面積最大時,△BPN的周長為3+


(3)解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4

∴拋物線的對稱軸為直線x=1.

在Rt△CNO中,OC=3,ON= ,由勾股定理得:CN=

設點D為CN中點,則D( ),CD=ND=

如解答圖,△CNQ為直角三角形,

①若點Q為直角頂點.

作Rt△CNO的外接圓⊙D,與對稱軸交于Q1、Q2兩點,由圓周角定理可知,Q1、Q2兩點符合題意.

連接Q1D,則Q1D=CD=ND=

過點D( )作對稱軸的垂線,垂足為E,

則E(1, ),Q1E=Q2E,DE=1﹣ =

在Rt△Q1DE中,由勾股定理得:

Q1E= =

∴Q1(1, ),Q2(1, );

②若點N為直角頂點.

過點N作NF⊥CN,交對稱軸于點Q3,交y軸于點F.

易證Rt△NFO∽Rt△CNO,則 = ,即 ,解得OF=

∴F(0,﹣ ),又∵N( ,0),

∴可求得直線FN的解析式為:y= x﹣

當x=1時,y=﹣

∴Q3(1,﹣ );

③當點C為直角頂點時.

過點C作Q4C⊥CN,交對稱軸于點Q4

∵Q4C∥FN,∴可設直線Q4C的解析式為:y= x+b,

∵點C(0,3)在該直線上,∴b=3.

∴直線Q4C的解析式為:y= x+3,

當x=1時,y=

∴Q4(1, ).

綜上所述,滿足條件的點Q有4個,

其坐標分別為:Q1(1, ),Q2(1, ),Q3(1,﹣ ),Q4(1, ).


【解析】(1)根據函數解析式由x=0求出點C的坐標,由y=0,求出點A、B的坐標。
(2)先求出直線BC的函數解析式,抓住PM∥y軸,設出點P、M的坐標(點P、M的橫坐標相同),就可以求出SBCM與x的函數解析式,即可求出點P的坐標,再求出PN、BP、BN的長,即可求出△BPN的周長。
(3)在Rt△CON中,利用勾股定理可求出CN的長,再求出CN的中點D的坐標,然后分類討論:①若點Q為直角頂點.②若點N為直角頂點.③當點C為直角頂點時.運用勾股定理、相似三角形的性質和判定、一次函數等相關知識進行解答。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知∠A=∠D,有下列五個條件:①AE=DE,②BE=CE,③AB=DC,④∠ABC=∠DCB,⑤AC=BD,能證明△ABC與△DCB全等的條件有幾個?并選擇其中一個進行證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①、圖②,在給定的一張矩形紙片上作一個正方形,甲、乙兩人的作法如下:

甲:以點A為圓心,AD長為半徑畫弧,交AB于點E,以點D為圓心,AD長為半徑畫弧,交CD于點F,連接EF,則四邊形AEFD即為所求;

乙:作∠DAB的平分線,交CD于點M,同理作∠ADC的平分線,交AB于點N,連接MN,則四邊形ADMN即為所求.

對于以上兩種作法,可以做出的判定是(  )

A.甲正確,乙錯誤B.甲、乙均正確

C.乙正確,甲錯誤D.甲、乙均錯誤

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點OA在數軸上表示的數分別是0l,將線段OA分成1000等份,其分點由左向右依次為M1M2M999;將線段OM1分成1000等份,其分點由左向右依次為N1N2N999;將線段ON1分成1000等份,其分點由左向右依次為P1P2P999.則點P314所表示的數用科學記數法表示為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知CD平分∠ACB,∠1=2

1)求證:DEAC

2)若∠3=30°,∠B=25°,求∠BDE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上一點,AB=DBBE平分∠ABC,交AC于點E,連接DE

1)求證:△ABE≌△DBE

2)若∠A=100°,∠C=50°,求∠AEB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩種方法證明“四邊形的外角和等于360°”.

如圖,DAEABFBCGCDH是四邊形ABCD的四個外角.

求證:DAEABFBCG∠CDH360°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC中,AB=AC,點DE分別在直線ABAC上,且∠DEC=DCE

1)如圖1,點D在線段AB上∠A=90°,若等腰直角三角形的邊與斜邊之比為,求證:

2)如圖2,若點D在線段AB的延長線上,∠A=60°,求證:EB=AD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了進一步了解七年級800名學生的身體素質情況,體育老師抽取七年級男女各25位學生進行一分鐘跳繩次數測試,以測試數據為樣本,繪制出部分頻數分布表和部分頻數分布直方圖.如下所示:

組別

次數x

頻數(人數)

1

80≤x100

6

2

100≤x120

8

3

120≤x140

4

140≤x160

16

5

160≤x180

6

請結合圖表完成下列問題:

(1)表中的,跳繩次數低于140次的有人,則

(2)請把頻數分布直方圖補充完整;

3)若七年級學生一分鐘跳繩次數(x)達標要求是:x120.請估算七年級學生達標人數.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品乱 | 精品视频一区二区三区 | 91精品国产欧美一区二区成人 | 亚洲一区成人 | 亚洲国产aⅴ成人精品无吗 91精品国产一区二区 | 日韩精品电影在线观看 | 国产成人在线一区二区 | 黄理论视频 | 密室大逃脱第六季大神版在线观看 | 天天干天天看天天操 | 中文字幕天天操 | 精品久久久久久久久久久久久久 | 一级免费视频 | 国产丝袜在线 | 在线国产欧美 | 日韩精品免费 | 国产xxx护士爽免费看 | 亚洲一区二区在线电影 | 日本在线看片 | 日韩精品免费 | 欧美日韩在线免费观看 | 高清久久| 1区2区3区视频 | 日韩中文久久 | 国产一级特黄aaa大片 | 91精品国产综合久久久蜜臀粉嫩 | 亚洲一区中文字幕在线观看 | 精品国产乱码久久久久久丨区2区 | 国产精品45p| 国产一区二区三区久久久久久久久 | 精品一区二区三区不卡 | 91精品国产日韩91久久久久久 | 91久久久久久 | 色综久久| aa级毛片毛片免费观看久 | 久久99精品久久久久久园产越南 | 大胆裸体gogo毛片免费看 | 天天干女人 | 精品久| 国产精品久久久久久久午夜片 | 最新色 |