日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,AC與BD相交于點O,有以下四個條件:
①OD=OC;②∠C=∠D;③AD=BC;④∠DAO=∠CBO.
從這四個條件中任選兩個,能使△DAO≌△CBO的選法種數共有(  )
分析:共有4種方法,根據全等三角形的判定定理(SAS,ASA,AAS,SSS)判斷即可.
解答:解:有①②,①④,②③,③④.
如果選擇①②,理由是:
∵在△DAO和△CBO中
∠C=∠D
OD=OC
∠DOA=∠COB

∴△DAO≌△CBO(ASA);
如果選擇①④,理由是:
∵在△DAO和△CBO中
∠DOA=∠COB
∠DAO=∠CBO
OD=OC

∴△DAO≌△CBO(ASA);
如果選擇②③,理由是:
∵在△DAO和△CBO中
∠D=∠C
∠DOA=∠COB
AD=BC

∴△DAO≌△CBO(ASA);
如果選擇③④,理由是:
∵在△DAO和△CBO中
∠DAO=∠CBO
∠DOA=∠COB
AD=BC

∴△DAO≌△CBO(ASA).
故選C.
點評:本題考查了全等三角形的判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、如圖,AC與BD相交于點P,若△ABC≌△DCB,則△ABP≌△DCP,理由是:
∵△ABC≌△DCB
∴AB=CD(全等三角形對應邊相等)
∠A=
∠D

在△ABP和△DCP中
∠A=∠D
∠APB=
∠DPC
(對頂角相等)
AB=CD
∴△ABP≌△DCP  ( AAS )

查看答案和解析>>

科目:初中數學 來源: 題型:

12、如圖,AC與BD相交于點O,已知OA=OC,OB=OD,則△AOB≌△COD的理由是
SAS

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,AC與BD相交于O,∠1=∠4,∠2=∠3,△ABC的周長為25cm,△AOD的周長為17cm,則AB=(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,AC與BD相交于點O,AD=BC,∠D=∠C,試說明BD與AC相等.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美高清 | 亚洲国产精品一区二区久久 | а天堂中文最新一区二区三区 | 欧美精品日韩 | www久| 国产精品久久一区二区三区 | 久久激情网 | 久久国产香蕉视频 | 一区欧美 | 亚洲久草 | 色欧美综合 | 国产成人精品久久 | 日韩av免费看 | 一区二区三区在线观看视频 | 日韩在线视频精品 | 日韩电影在线免费观看 | 国产欧美精品一区二区色综合朱莉 | 九九热这里只有精 | 成人福利网| 欧美一区二区三区黄 | 精品无人乱码一区二区三区 | 精品久久一区 | 亚洲黄色免费在线看 | 中文字幕一区二区三区精彩视频 | 亚洲欧美中文日韩在线v日本 | 亚洲欧美aⅴ | 欧美14一18处毛片 | 国产乱码精品一区二区三区手机版 | 在线看片福利 | 美女黄网站视频免费 | 日韩电影免费在线 | 国产精品美女久久久久aⅴ国产馆 | 欧美日韩中文字幕在线 | 91在线精品秘密一区二区 | 妞干网免费在线视频 | 亚洲男人的天堂网站 | 欧美偷偷操 | 99视频免费 | 欧美全黄 | 久久久久无码国产精品一区 | 91.成人天堂一区 |