【題目】如圖1,四邊形,
,
,
,
,
.
(1)求四邊形的面積;
(2)如圖2,以為坐標原點,以
、
所在直線為
軸、
軸建立直角坐標系,點
在
軸上,若
,求
的坐標.
【答案】(1)36;(2)(0,0)或(0,8)
【解析】
(1)連接BD,根據勾股定理可以求得BD的長,然后根據勾股定理的逆定理可以判斷△BDC的形狀,從而可以解答本題;
(2)先根據,求出PD的長度,再根據D點的坐標即可求解.
解:(1)連接BD,
∵在△ABD中,∠DAB=90°,
∴BD2=AB2+AD2=32+42=25,
∴BD=5,
∵在△DBC中,DB2+BC2=52+122=25+144=169,CD2=132=169,
∴DB2+BC2=CD2,
∴△DBC是直角三角形,
∴∠DBC=90°,
∴S四邊形ABCD=S△DAB+S△DBC=×3×4+
×5×12=36.
(2)∵S△PBD=S四邊形ABCD,
∴PDAB=
×36=6,
∴PD×3=6,
∴PD=4,
∵D(0,4),點P在y軸上,
∴P的坐標為(0,0)或(0,8).
科目:初中數學 來源: 題型:
【題目】類比轉化、從特殊到一般等思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整.
(1)嘗試探究
如圖(1),在正方形ABCD中,對角線AC、BD相交于點O,點E是BC邊上一點,AE與BD交于點G,過點E作EF⊥AE交AC于點F,若=2,則
的值是 ;
(2)拓展遷移
如圖(2),在矩形ABCD中,過點B作BH⊥AC于點O,交AD相于點H,點E是BC邊上一點,AE與BH相交于點G,過點E作EF⊥AE交AC于點F.
①若∠BAE=∠ACB,sin∠EAF=,求tan∠ACB;
②若,
=b(a>0,b>0),求
的值(用含a,b的代數式表示).
圖(1) 圖(2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請將下列事件發生的概率標在圖中:
(1)從高處拋出的物體必落到地面;
(2)從裝有個紅球的袋子中任取一個,取出的球是白球;
(3)月亮繞著地球轉;
(4)從裝有個紅球、
個白球的口袋中任取一個球,恰好是紅球(這些球除顏色外完全相同);
(5)三名選手抽簽決定比賽順序(有三個簽,分別寫有,
,
),抽到寫有
的簽.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,三個村莊A、B、C之間的距離分別為AB=12km,AC=5km,BC=13km,要從A修一條公路AD直達BC,已知公路的造價為26000元/km,求這條公路的最低造價是多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.
用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉化”思想求方程的解;
(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點,DE⊥BC交AB于點E,AD=AC,EC交AD于點F.
(1)求證:△ABC∽△FCD;
(2)求證:FC=3EF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com