日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
數學家高斯在上學時曾經研究過這樣一個問題,1+2+3+…+10=?
經過研究,這個問題的一般性結論是1+2+3+…+n=xn(n+1),其中n為正整數,現在我們來研究一個類似的問題:1×2+2×3+…+n(n+1)=? 觀察下面三個特殊的等式:
1×2=n(1×2×3﹣0×1×2)
2×3=x(2×3×4﹣1×2×3)
3×4=n(3×4×5﹣2×3×4)
將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=m×3×4×5=20.讀完這段材料,請你計算:
(1)1×2+2×3+…+100×101=_________;(直接寫出結果)
(2)1×2+2×3+…+n(n+1);(寫出計算過程)
(3)1×2×3+2×3×4+…+n(n+1)(n+2)=_________
解:(1)∵1×2+×2×3+3×4=m×3×4×5=×4×5=20,
∴1×2+2×3+…+100×101=×100×101×102=343400;
(2)∵1×2=n(1×2×3﹣0×1×2)=(1×2×3﹣0×1×2),
2×3=x(2×3×4﹣1×2×3)=(2×3×4﹣1×2×3),
3×4=n(3×4×5﹣2×3×4)=(3×4×5﹣2×3×4),

n(n+1)=[n(n+1)(n+2)﹣(n﹣1)n(n+1)],
∴1×2+2×3+…+n(n+1)=[1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4+…+n(n+1)(n+2)﹣(n﹣1)n(n+1)],
=n(n+1)(n+2);
(3)根據(2)的計算方法,
1×2×3=n(1×2×3×4﹣0×1×2×3)=(1×2×3×4﹣0×1×2×3),
2×3×4=x(2×3×4×5﹣1×2×3×4)=(2×3×4×5﹣1×2×3×4),

n(n+1)(n+2)=[n(n+1)(n+2)(n+3)﹣(n﹣1)n(n+1)(n+2)],
∴1×2×3+2×3×4+…+n(n+1)(n+2)=(1×2×3×4﹣0×1×2×3+2×3×4×5﹣1×2×3×4+…+n(n+1)(n+2)(n+3)﹣(n﹣1)n(n+1)(n+2)],
=n(n+1)(n+2)(n+3).
故答案為:(1)343400;(2)n(n+1)(n+2);(3)n(n+1)(n+2)(n+3).
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

數學家高斯在上學時曾經研究過這樣一個問題,1+2+3+…+10=?
經過研究,這個問題的一般性結論是1+2+3+…+n=
1
2
n(n+1),其中n為正整數,現在我們來研究一個類似的問題:1×2+2×3+…+n(n+1)=?
觀察下面三個特殊的等式:
1×2=n(1×2×3-0×1×2)
2×3=x(2×3×4-1×2×3)
3×4=n(3×4×5-2×3×4)
將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=m×3×4×5=20.
讀完這段材料,請你計算:
(1)1×2+2×3+…+100×101=
343400
343400
;(直接寫出結果)
(2)1×2+2×3+…+n(n+1);(寫出計算過程)
(3)1×2×3+2×3×4+…+n(n+1)(n+2)=
1
4
n(n+1)(n+2)(n+3)
1
4
n(n+1)(n+2)(n+3)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

數學家高斯在上學時曾經研究過這樣一個問題,1+2+3+…+10=?
經過研究,這個問題的一般性結論是1+2+3+…+n=
1
2
n(n+1),其中n為正整數,現在我們來研究一個類似的問題:1×2+2×3+…+n(n+1)=?
觀察下面三個特殊的等式:
1×2=n(1×2×3-0×1×2)
2×3=x(2×3×4-1×2×3)
3×4=n(3×4×5-2×3×4)
將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=m×3×4×5=20.
讀完這段材料,請你計算:
(1)1×2+2×3+…+100×101=______;(直接寫出結果)
(2)1×2+2×3+…+n(n+1);(寫出計算過程)
(3)1×2×3+2×3×4+…+n(n+1)(n+2)=______.

查看答案和解析>>

科目:初中數學 來源:湖北省期中題 題型:解答題

閱讀材料,數學家高斯在上學時曾經研究過這樣一個問題,1+2+3+…+10=?
經過研究,這個問題的一般性結論是1+2+3+…+n=n(n+1),其中n為正整數,現在我們來研究一個類似的問題:1×2+2×3+…+n(n+1)=?
觀察下面三個特殊的等式:
1×2=(1×2×3-0×1×2)
2×3=(2×3×4-1×2×3)
3×4=(3×4×5-2×3×4)
將這三個等式的倆邊相加,可以得到1×2+2×3+3×4=×3×4×5=20;
讀完這段材料,請你計算:
(1)1×2+2×3+…+100×101;(只需寫出結果)
(2)1×2+2×3+…+n(n+1);(寫出計算過程)
(3)1×2×3+2×3×4+…+n(n+1)(n+2)。(只需寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀材料,數學家高斯在上學時曾經研究過這樣一個問題,1+2+3+…+10=?

經過研究,這個問題的一般性結論是1+2+3+…+n=n(n+1),其中n為正整數,現在我們來研究一個類似的問題:1×2+2×3+…+ n(n+1)=?

觀察下面三個特殊的等式:

1×2=(1×2×3-0×1×2)

2×3=(2×3×4-1×2×3)

3×4=(3×4×5-2×3×4)

將這三個等式的倆邊相加,可以得到1×2+2×3+3×4=×3×4×5=20.

讀完這段材料,請你計算:

(1)1×2+2×3+…+100×101;(只需寫出結果)(2分)

(2)1×2+2×3+…+ n(n+1);(寫出計算過程) (5分)

(3)1×2×3+2×3×4+…+ n(n+1)(n+2).(只需寫出結果)(3分)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜久久 | 美国特级a毛片免费网站 | 亚洲欧美国产精品久久久久 | 黄色av网站在线免费观看 | 欧美色图在线观看 | 欧美一级小视频 | 亚洲 自拍 另类 欧美 丝袜 | 天天干天天操 | mm1313亚洲国产精品美女 | 97久久精品午夜一区二区 | 亚洲女人天堂成人av在线 | 污版| 成人精品 | 精品欧美一区二区三区久久久 | 97国产免费 | 青青青久草| 久久久99精品免费观看 | 国产精品一区二 | 欧美视频三区 | 在线欧美一区 | 在线免费国产视频 | 亚洲国产精品一区二区三区 | 国产免费av在线 | 美日韩免费视频 | 成人在线国产 | 成人免费视频www在线观看我 | 久久久久亚洲一区二区三区 | 日日av拍夜夜添久久免费老牛 | 69久久99精品久久久久婷婷 | 国产中文字幕一区 | 色十八| 欧美色综合| 91免费国产 | 中文字幕网在线 | 国产精品国产自产拍高清 | 国产黄色在线观看 | 日韩a级免费视频 | 精品在线看 | av黄色在线播放 | 97人人爽人人澡人人精品 | 国产一区二区影院 |