【題目】某工廠現有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品50件.生產一件A產品需要甲種原料9千克,乙種原料3千克,可獲利潤700元;生產一件B產品,需要甲種原料4千克,乙種原料10千克,可獲利潤1200元.
(1)設生產x件A種產品,寫出其題意x應滿足的不等式組;
(2)由題意有哪幾種按要求安排A、B兩種產品的生產件數的生產方案?請您幫助設計出來.
【答案】(1);(2)有3種生產方案:方案1:A產品30件,B產品20件;方案2:A產品31件,B產品19件;方案3:A產品32件,B產品18件.
【解析】分析:(1)設生產x件A種產品,則生產B產品(50﹣x)件,共需要甲種原料[9x+4(50﹣x)]千克,乙種原料[3x+10(50﹣x)]千克,根據題意就可以建立不等式組;
(2)求出(1)的不等式組的解集,就可以確定x的值,從而求出生產方案.
詳解:(1)設生產x件A種產品,則生產B產品(50﹣x)件,共需要甲種原料[9x+4(50﹣x)]千克,乙種原料[3x+10(50﹣x)]千克,由題意得:
;
(2)∵,解得:30≤x≤32,∴x為整數,∴x=30,31,32,∴有3種生產方案:
方案1:A產品30件,B產品20件;
方案2:A產品31件,B產品19件;
方案3:A產品32件,B產品18件.
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y= (x>0)的圖象與一次函 數y=﹣x+b的圖象分別交于A(1,3)、B兩點.
(1)求m、b的值;
(2)若點M是反比例函數圖象上的一動點,直線MC⊥x軸于C,交直線AB于點N,MD⊥y軸于D,NE⊥y軸于E,設四邊形MDOC、NEOC的面積分別為S1、S2 , S=S2﹣S1 , 求S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD平分∠BAC交BC于點D,點F在BA的延長線上,點E在線段CD上,EF與AC相交于點G,∠BDA+∠CEG=180°.
(1)AD與EF平行嗎?請說明理由;
(2)若點H在FE的延長線上,且∠EDH=∠C,則∠F與∠H相等嗎,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按照題中提供的思路點撥,先填空,然后完成解答的全過程.
如圖,已知AB=AD,∠BAD=60°,∠BCD=120°,延長BC,使CE=CD,連接DE,求證:BC+DC=AC.
思路點撥:(1)由已知條件AB=AD,∠BAD=60°,可知△ABD是_三角形.同理由已知條件∠BCD=120°得到∠DCE=_,且CE=CD,可知_;
(2)要證BC+DC=AC,可將問題轉化為證兩條線段相等,即_=_;
(3)要證(2)中所填寫的兩條線段相等,可以先證明_.請寫出完整的證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育委員統計了全班同學60秒跳繩的次數,并列出下列人數次數分布表,回答下列問題:
(1)全班有多少人?
(2)組距、組數是多少?
(3)跳繩次數在100≤x<140范圍內同學有多少人,占全班的百分之幾(精確到0.01%)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn﹣1按如圖所示的方式放置,其中點A1、A2、A3、…、An均在一次函數y=kx+b的圖象上,點C1、C2、C3、…、Cn均在x軸上.若點B1的坐標為(1,1),點B2的坐標為(3,2),則點An的坐標為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com