日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖①,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為M(2,-3),且經過點A(0,1),直線y=x+1與拋物線交于A點和B點.
(1)求這條拋物線的解析式;
(2)求△ABM的面積;
(3)如圖②,點P是x軸上的一動點,請探索:
①過點P作PQ∥AB,交BM于點Q,連接AQ,AP,當△APQ的面積最大時,求P的坐標.
②是否存在點P,使得△PAB是直角三角形?若存在,求出所有的點P坐標;若不存在,請說明理由.
分析:(1)利用頂點式求出二次函數解析式即可;
(2)首先得出D點坐標,把y=x+1代入y=(x-2)2-3,得出x的值,再利用S△ABM=S△AMN+S△BMN求出即可;
(3)①首先求出MB所在直線的解析式為:y=3x-9,進而得出△NQP∽△NBD,即可表示出QP的長,再表示出CP的長,再利用二次函數最值求法得出P點坐標;
②分三種情況討論:Ⅰ.當∠BAP=90°,得出△DAP∽△DHB,Ⅱ.當∠APB=90°時,得出△AOP∽△PHB,Ⅲ.當∠ABP=90°時,得出△AOD∽△PBD分別求出即可.
解答:解:(1)∵拋物線y=ax2+bx+c(a≠0)的頂點坐標為M(2,-3),
∴設y=a(x-2)2-3,將點A(0,1)代入得,
1=4a-3,
∴a=1
∴y=(x-2)2-3;

(2)當y=0時,0=x+1,
∴x=-1,∴D(-1,0)
把y=x+1代入y=(x-2)2-3,得
x+1=(x-2)2-3

解得:x1=0,x2=5,
如圖1,過點M作MN∥y軸交AB于點N,過點A作AF⊥MN于點F,過點B作BE⊥MN與點E,
當x=2時,y=x+1=3,
∴MN=6,
∴S△ABM=S△AMN+S△BMN=
MN×AF
2
+
MN×BE
2
=
1
2
×6×5=15;

(3)①,
∵B(5,6),A(-1,0)
∴BD=6
2

設MB所在直線的解析式為y=kx+b,
把點B,點M則:
6=5k+b
-3=2k+b

k=3
b=-9

∴MB所在直線的解析式為:y=3x-9,
∴N(3,0),
∴ND=3-(-1)=4
設P(x,0),則PN=3-x
∵PQ∥AB,
∴△NQP∽△NBD,
PQ
BD
=
PN
DN

PQ
6
2
=
3-x
4

∴PQ=
3
2
(3-x)
2

如圖2,過點P作PC⊥AB于點C,
∵直線y=x+1交x軸于點(-1,0),
∴∠ADO=45°,
∴Rt△PCD為等腰Rt△,
CP=
2
2
DP=
2
2
(x+1)

∴△APQ的面積=
1
2
×
3
2
(3-x)
2
×
2
2
(x+1)=-
3
4
(x2-2x-3)=-
3
4
(x-1)2+3,
∴x=1時,S的值最大,
此時點P(1,0);
②分三種情況討論:
Ⅰ.當∠BAP=90°,如圖3,
∵∠DAP=∠HDB,∠BHD=∠DAP,
∴△DAP∽△DHB,
DP
DB
=
DA
DH

DP
6
2
=
2
6

∴解得:DP=2,
∴OP=1,
∴P1(1,0),

Ⅱ.當∠APB=90°時,如圖4,
∵∠APO+∠BPH=90°,∠APO+∠OAP=90°,
∴∠OAP=∠BPH,
∵∠AOP=∠PHB=90°,
∴△AOP∽△PHB,
AO
PH
=
PO
BH

1
5-OP
=
OP
6

解得:OP=2或3,
∴P2(2,0),P3(3,0),

Ⅲ.當∠ABP=90°時,如圖5,
∵∠BDP=∠ODA,∠DBP=∠AOD=90°,
∴△AOD∽△PBD,
OD
BD
=
AD
PD

1
6
2
=
2
PD

解得:PD=12,
∴OP=11,
P4(11,0),
綜上所述:P點坐標為:(1,0),(2,0),(3,0),(11,0).
點評:此題主要考查了二次函數的綜合應用以及相似三角形的判定與性質以及三角形面積和二次函數最值問題,利用分類討論得出是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點P為所求拋物線上的一動點,試判斷以點P為圓心,PB為半徑的圓與x軸的位置關系,并說明理由.
(3)如圖2,設點P在拋物線上且與點A不重合,直線PB與拋物線的另一個交點為Q,過點P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線y=-x2+b x+c經過點A(1,0),B(-3,0)兩點,且與y軸交于點C.
(1)求b,c的值.
(2)在第二象限的拋物線上,是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存在,請說明理由.
(3)如圖2,點E為線段BC上一個動點(不與B,C重合),經過B、E、O三點的圓與過點B且垂直于BC的直線交于點F,當△OEF面積取得最小值時,求點E坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南沙區一模)如圖1,已知拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=2OA=4.
(1)求該拋物線的函數表達式;
(2)設P是(1)中拋物線上的一個動點,以P為圓心,R為半徑作⊙P,求當⊙P與拋物線的對稱軸l及x軸均相切時點P的坐標.
(3)動點E從點A出發,以每秒1個單位長度的速度向終點B運動,動點F從點B出發,以每秒
2
個單位長度的速度向終點C運動,過點E作EG∥y軸,交AC于點G(如圖2).若E、F兩點同時出發,運動時間為t.則當t為何值時,△EFG的面積是△ABC的面積的
1
3

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線y=ax2-2ax+b經過梯形OABC的四個頂點,若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,平移后的兩條直線分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設梯形O1A1B1C1的面積為S,A1、B1的坐標分別為(x1,y1)、(x2,y2).用含S的代數式表示x2-x1,并求出當S=36時點A1的坐標;
(3)如圖3,設圖1中點D坐標為(1,3),M為拋物線的頂點,動點P從點B出發,以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發,以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發,當點Q到達點M時,P、Q兩點同時停止運動.設P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線的頂點為A(O,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品成人a8198a | 一区二区精品 | 欧美中文字幕在线观看 | 午夜噜噜噜 | 国产免费看黄网站 | 欧美精品黄色 | 99久久精品免费 | 精品国产一区二区三区国产馆杂枝 | 亚洲午夜成激人情在线影院 | 久久久99精品免费观看 | 天天操操 | 天天草狠狠干 | 免费亚洲视频 | 九九在线视频 | 不卡视频一区二区 | 精品96久久久久久中文字幕无 | 久久久网 | 五月婷婷之综合激情 | 中文字幕一区二区三区四区 | 日韩激情在线 | 中文字幕在线视频第一页 | 国产美女在线观看精品 | 涩爱网 | 亚洲第一视频网站 | av网站观看 | 欧美一区二区在线视频 | 欧美极品在线 | 91精品国产乱码久久久久久久久 | 久久久久久久av | 日韩性xxx | 午夜免 | jjzz18国产 | 久久国内精品 | 欧美亚洲国产日韩 | 亚洲欧洲一区二区 | 成人久久久| 免费黄色av | 国产精品久久久久国产a级 91国内外精品自在线播放 | 国产亚洲成av人片在线观看桃 | 日韩视频一区 | 亚洲美女网站 |