(本題滿分7分)經過某十字路口的汽車,它可能繼續直行,也可能向左轉或向右轉.如果這三種可能性大小相同,現有兩輛汽車經過這個十字路口.
(1)試用樹形圖或列表法中的一種列舉出這兩輛汽車行駛方向所有可能的結果;
(2)求至少有一輛汽車向左轉的概率.
科目:初中數學 來源: 題型:
(本題滿分10分)
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(—1,0)、C(0,—3)兩點,與x軸交于另一點B.
1.(1)求這條拋物線所對應的函數關系式;
2.(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
3.(3)設點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011年初中畢業升學考試(廣西欽州卷)數學 題型:解答題
(本題滿分10分)已知二次函數的圖象與x軸分別交于點A、B,與y軸交于點C.點D是拋物線的頂點.
(1)如圖①,連接AC,將△OAC沿直線AC翻折,若點O的對應點O'恰好落在該拋物
線的對稱軸上,求實數a的值;
(2)如圖②,在正方形EFGH中,點E、F的坐標分別是(4,4)、(4,3),邊HG位于
邊EF的右側.小林同學經過探索后發現了一個正確的命題:“若點P是邊EH或邊HG上的
任意一點,則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應相等(即
這四條線段不能構成平行四邊形).”若點P是邊EF或邊FG上的任意一點,剛才的結論是
否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當點P在拋物線對稱軸上時,設點P的縱坐標t是大于3的常數,試問:是
否存在一個正數a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應相等
(即這四條線段能構成平行四邊形)?請說明理由.
查看答案和解析>>
科目:初中數學 來源:2011年初中畢業升學考試(廣西欽州卷)數學 題型:解答題
(本題滿分9分)如圖①,小慧同學把一個正三角形紙片(即△OAB)放在直線l1上,OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順時針方向旋轉120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1繞點B1按順時針方向旋轉120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經過上述兩次旋轉到達O2處).
小慧還發現:三角形紙片在上述兩次旋轉的過程中,頂點O運動所形成的圖形是兩段
圓弧,即和
,頂點O所經過的路程是這兩段圓弧的長度之和,并且這兩段圓弧
與直線l1圍成的圖形面積等于扇形AOO1的面積、△AO1B1的面積和扇形B1O1O2的面積之
和.
小慧進行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA
邊與直線l2重合,然后將正方形紙片繞著頂點^按順時針方向旋轉90°,此時點O運動到
了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B1處;小慧又將正方形
紙片AO1C1B1繞頂點B1按順時針方向旋轉90°,……,按上述方法經過若干次旋轉后.她
提出了如下問題:
問題①:若正方形紙片OABC接上述方法經過3次旋轉,求頂點O經過的路程,并
求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OA BC
按上述方法經過5次旋轉,求頂點O經過的路程;
問題②:正方形紙片OABC按上述方法經過多少次旋轉,頂點O經過的路程是
?
請你解答上述兩個問題.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com