【題目】如圖,在平面直角坐標系中,A(p,0),B(0,q),且p、q滿足(p﹣2)2+=0.
(1)求直線AB的解析式;
(2)若點M為直線y=mx上一點,且△ABM是以AB為底的等腰直角三角形,求m值.
【答案】(1)y=﹣2x+4;(2)m=1.
【解析】
(1)根據非負數的性質可求得p、q,可求得A、B坐標,利用待定系數法可求得直線AB的解析式;
(2)根據A、B坐標,可求出AB及AB中點的C坐標,設M坐標為(x,mx),則MC=AB,且M點在線段AB的垂直平分線上,可求得垂直平分線的方程,則可求得M的值.
解:(1)根據題意可得:p﹣2=0,解得 p=2,
根據題意可得:q﹣4=0 解得:q=4,
設直線AB的解析式為y=kx+4( k≠0)
將A(2,0)代入得
2k+4=0
k=﹣2
∴AB的解析式為y=﹣2x+4;
(2)過M點作MH⊥y軸于H,過M點作MN⊥x軸于N
∴∠BHM=∠MNA=90°
∵∠BON=90°
∴∠HMN=90°
∴∠HMA+∠AMN=90°
∵△ABM是以AB為底的等腰直角三角形
∴MB=MA,∠BMA=90°
∴∠HMA+∠BMH=90°
∴∠AMN=∠BMH
∴△BHM≌△AMN
∴MH=MN,
設M的坐標為(x,y)
則x=y
∴mx=x
∴m=1.
科目:初中數學 來源: 題型:
【題目】為積極響應“弘揚傳統文化”的號召,某學校組織全校1200名學生進行經典詩詞誦讀活動,并在活動之后舉辦經典詩詞大賽,為了解本次系列活動的持續效果,學校團委在活動啟動之初,隨機抽取40名學生調查“一周詩詞誦背數量”,根據調查結果繪制成的統計圖如圖所示.
大賽結束后一個月,再次抽查這部分學生“一周詩詞誦背數量”,繪制成統計表如下:
一周詩詞誦背數量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數 | 1 | 3 | 5 | 6 | 10 | 15 |
請根據調查的信息
(1)求活動啟動之初學生“一周詩詞誦背數量”的中位數;
(2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數;
(3)選擇適當的統計量,至少從兩個不同的角度分析兩次調查的相關數據,評價該校經典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=,PC=1、求∠BPC度數的大小和等邊三角形ABC的邊長.
李明同學的思路是:將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進而求出等邊△ABC的邊長為__________;
問題得到解決.
請你參考李明同學的思路,探究并解決下列問題:如圖3,在正方形ABCD內有一點P,且PA=,BP=
,PC=1.求∠BPC度數的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系
中.
(1)請直接寫出點、
兩點的坐標:
:___________;
:___________;
(2)若把向上平移3個單位,再向右平移2個單位得
,請在上圖中畫出
,并寫出點
的坐標___________;
(3)求的面積是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著氣溫的升高,空調的需求量大增.某家電超市對每臺進價分別為2000元、1700元的、
兩種型號的空調,近兩周的銷售情況統計如下:
銷售時段 | 銷售量 | 銷售收入 | |
|
| ||
第一周 | 6臺 | 7臺 | 31000元 |
第二周 | 8臺 | 11臺 | 45000元 |
(1)求、
兩種型號的空調的銷售價;
(2)若該家電超市準備用不多于54000元的資金,采購這兩種型號的空調30臺,求種型號的空調最多能采購多少臺?
(3)在(2)的條件下,該家電超市售完這30臺空調能否實現利潤不低于15800元的目標?若能,請給出采購方案.若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠ABC的平分線交AC于點D,在AB的延長線上截取BE,使BE=CD,連接DE交BC于點F.
(1)如圖1,當∠CAB=60°時,若AB=2,求DE的長度;
(2)如圖2,當∠CAB≠60°時,求證:BE=2BF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在課外學習時遇到這樣一個問題:
定義:如果二次函數y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數)與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數)滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個函數互為“旋轉函數”.
求函數y=﹣x2+4x﹣3的“旋轉函數”.小明是這樣思考的:由函數y=﹣x2+4x﹣3可知,a1=﹣1,b1=4,c1=﹣3,根據a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個函數的“旋轉函數”.
(1)請參考小明的方法寫出函數y=﹣x2+4x﹣3的“旋轉函數”;
(2)若函數與y=x2﹣3nx+n互為“旋轉函數”,求
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=3,BC=4,點E是BC邊上任一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當CE的長為_____時,△CEB′恰好為直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數互為相反數.
(1)填空:a= ,b= ,c= ;
(2)先化簡,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com