【題目】如圖二次函數的圖像交
軸于
、
,交
軸于
,直線
平行于
周,與拋物線另一個交點為
.
(1)求函數的解析式;
(2)若是
軸上的動點,
是拋物線上的動點,求使以
、
、
、
為頂點的四邊形是平行四邊形的
的橫坐標.
【答案】(1);(2)1或
或
或5.
【解析】
(1)先設二次函數的解析式為,展開得
,
再把代入,求出a的值即可;
(2)先聯立方程組,求出
點坐標為
,當以
、
、
、
為頂點四邊形是平行四邊形時,有兩種情況討論,
是平行四邊形的邊時和
是平行四邊形的對角線時,分別求解即可.
解:(1)二次函數的圖像交
軸于
、
,
設二次函數的解析式為
展開得:,
二次函數的圖像交
軸于
,
,得
二次函數的解析式為
(2)聯立方程組得:,
解得或
,
∴點坐標為
,
當以、
、
、
為頂點四邊形是平行四邊形時,有兩類情形;
①是平行四邊形的邊時,
聯立方程組,
解得,
如圖,此時,或
或
②是平行四邊形的對角線時
、
兩點的中點坐標為
,
設
,可得
的坐標為
,
將的坐標
代入
,
得,解得
(舍去),
,
得
科目:初中數學 來源: 題型:
【題目】如圖1,內接于
,AD是直徑,
的平分線交BD于H,交
于點C,連接DC并延長,交AB的延長線于點E.
(1)求證:;
(2)若,求
的值
(3)如圖2,連接CB并延長,交DA的延長線于點F,若,求
的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一動點,G是BC邊上的一動點,GE∥AD分別交AC、BA或其延長線于F、E兩點
(1)如圖1,當BC=5BD時,求證:EG⊥BC;
(2)如圖2,當BD=CD時,FG+EG是否發生變化?證明你的結論;
(3)當BD=CD,FG=2EF時,DG的值= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某養殖場計劃用96米的竹籬笆圍成如圖所示的①、②、③三個養殖區域,其中區域①是正方形,區域②和③是矩形,且AG∶BG=3∶2.設BG的長為2x米.
(1)用含x的代數式表示DF= ;
(2)x為何值時,區域③的面積為180平方米;
(3)x為何值時,區域③的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)
(1)轉動轉盤一次,求轉出的數字是-2的概率;
(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,關于x的方程:x+=c+
的解是x1=c,x2=
;x﹣
=c﹣
的解是x1=c,x2=﹣
;x+
=c+
的解是x1=c,x2=
;x+
=c+
的解是x1=c,x2=
;……
(1)請觀察上述方程與解的特征,比較關于x的方程x+=c+
(a≠0)與它們的關系猜想它的解是什么,并利用“方程的解”的概念進行驗證.
(2)可以直接利用(1)的結論,解關于x的方程:x+=a+
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若sinG=0.6,CF=4,求GA的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC=10,高AD=8,M、N、P分別在邊AB、BC、AC上移動,但不與A、B、C重合,連接MN、NP、MP,且MP始終與BC保持平行,AD與MP相交于點E,設MP=x,△MNP的面積用y表示.
(1)求y關于x的函數關系式;
(2)當x取什么值時,y有最大值,并求出的最大值;
(3)當x取什么值時,△MNP是等腰直角三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將圖中的型(正方形)、
型(菱形)、
型(等腰直角三角形)紙片分別放在
個盒子中,盒子的形狀、大小、質地都相同,再將這
個盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出個盒子,盒中的紙片既是軸對稱圖形又是中心對稱圖形的概率是 ;
(2)攪勻后先從中摸出個盒子(不放回),再從余下的
個盒子中摸出
個盒子,把摸出的
個盒中的紙片長度相等的邊拼在一起,求拼成的圖形是軸對稱圖形的概率.(不重疊無縫隙拼接)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com