【題目】如圖,在⊙O中,點C為 的中點,∠ACB=120°,OC的延長線與AD交于點D,且∠D=∠B.
(1)求證:AD與⊙O相切;
(2)若CE=4,求弦AB的長.
【答案】(1)見解析;(2)8
【解析】
(1)連接OA,由,得CA=CB,根據題意可得出∠O=60°,從而得出∠OAD=90°,則AD與⊙O相切;
(2)由題意得OC⊥AB,Rt△BCE中,由三角函數得BE=4,即可得出AB的長.
(1)證明:如圖,連接OA,
∵,
∴CA=CB,
又∵∠ACB=120°,
∴∠B=30°,
∴∠O=2∠B=60°,
∵∠D=∠B=30°,
∴∠OAD=180°﹣(∠O+∠D)=90°,
∴AD與⊙O相切;
(2)∵∠O=60°,OA=OC,
∴△OAC是等邊三角形,
∴∠ACO=60°,
∵∠ACB=120°,
∴∠ACB=2∠ACO,AC=BC,
∴OC⊥AB,AB=2BE,
∵CE=4,∠B=30°,
∴BC=2CE=8,
∴BE==
=4
,
∴AB=2BE=8,
∴弦AB的長為8.
科目:初中數學 來源: 題型:
【題目】在矩形 ABCD 中,M,N,P,Q 分別為邊 AB,BC,CD,DA 上的點(不與端點重合).對于任意矩形 ABCD,下面四個結論中:①存在無數個四邊形 MNPQ 是平行四邊形;②存在無數個四邊形 MNPQ 是矩形;③存在無數個四邊形 MNPQ 是菱形;④不存在四邊形 MNPQ 是正方形.所有正確結論的序號是_________________ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖的直角坐標系中,已知點A(1,0)、B(0,﹣2),將線段AB繞點A按逆時針方向旋轉90°至AC,若拋物線y=﹣x2+bx+2經過點C.
(1)求拋物線的解析式;
(2)如圖,將拋物線平移,當頂點至原點時,過Q(0,﹣2)作不平行于x軸的直線交拋物線于E、F兩點,問在y軸的正半軸上是否存在一點P,使△PEF的內心在y軸上?若存在,求出點P的坐標;若不存在,說明理由.
(3)在拋物線上是否存在一點M,使得以M為圓心,以為半徑的圓與直線BC相切?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,直徑CD垂直弦AB于點E,且OE=DE.點P為上一點(點P不與點B,C重合),連結AP,BP,CP,AC,BC.過點C作CF⊥BP于點F.給出下列結論:①△ABC是等邊三角形;②在點P從B→C的運動過程中,
的值始終等于
.則下列說法正確的是( )
A.①,②都對B.①對,②錯C.①錯,②對D.①,②都錯
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】農經公司以30元/千克的價格收購一批農產品進行銷售,為了得到日銷售量p(千克)與銷售價格x(元/千克)之間的關系,經過市場調查獲得部分數據如下表:
銷售價格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日銷售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)請你根據表中的數據,用所學過的一次函數、二次函數、反比例函數的知識確定p與x之間的函數表達式;
(2)農經公司應該如何確定這批農產品的銷售價格,才能使日銷售利潤最大?
(3)若農經公司每銷售1千克這種農產品需支出a元(a>0)的相關費用,當40≤x≤45時,農經公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤﹣日支出費用)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=2,BC=4,點D、E分別是邊BC、AB的中點,將△BDE繞著點B旋轉,點D、E旋轉后的對應點分別為點D′、E′,當直線D′E′經過點A時,線段CD′的長為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點,交y軸于點B,且OB=2CO.
(1)求二次函數解析式;
(2)在二次函數圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側,過M、N作x軸的垂線交x軸于點G、H兩點,當四邊形MNHG為矩形時,求該矩形周長的最大值;
(3) 拋物線對稱軸上是否存在點P,使得△ABP為直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司經銷的一種產品每件成本為40元,要求在90天內完成銷售任務.已知該產品90天內每天的銷售價格與時間(第x天)的關系如下表:
時間(第x天) | 1≤x<50 | 50≤x≤90 |
x+50 | 90 |
任務完成后,統計發現銷售員小王90天內日銷售量p(件)與時間(第x天)滿足一次函數關系p=﹣2x+200.設小王第x天銷售利潤為W元.
(1)直接寫出W與x之間的函數關系式,井注明自變量x的取值范圍;
(2)求小生第幾天的銷售量最大?最大利潤是多少?
(3)任務完成后,統計發現平均每個銷售員每天銷售利潤為4800公司制定如下獎勵制度:如果一個銷售員某天的銷售利潤超過該平均值,則該銷售員當天可獲得200元獎金.請計算小王一共可獲得多少元獎金?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點D是△ABC的邊AB上一點,點E為AC的中點,過點C作CF∥AB交DE延長線于點F.
(1)求證:AD=CF.
(2)連接AF,CD,求證:四邊形ADCF為平行四邊形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com