【題目】如圖,在平面直角坐標系中,點P的坐標為(0,2),直線y= 與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為( )
A.3
B.4
C.5
D.6
【答案】B
【解析】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當PM⊥AB時,PM最短,
∵直線y= x﹣3與x軸、y軸分別交于點A,B,
∴點A的坐標為(4,0),點B的坐標為(0,﹣3),
在Rt△AOB中,AO=4,BO=3,AB= =5,
∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=5,
∴△PBM∽△ABO,
∴ =
,即
=
,解得:PM=4.
所以答案是:B.
【考點精析】通過靈活運用垂線段最短和勾股定理的概念,掌握連接直線外一點與直線上各點的所有線段中,垂線段最短;現實生活中開溝引水,牽牛喝水都是“垂線段最短”性質的應用;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
科目:初中數學 來源: 題型:
【題目】小麗購買學習用品的收據如表,因污損導致部分數據無法識別,根據下表,解決下列問題:
(1)小麗買了自動鉛筆、記號筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?
商品名 | 單價(元) | 數量(個) | 金額(元) |
簽字筆 | 3 | 2 | 6 |
自動鉛筆 | 1.5 | ● | ● |
記號筆 | 4 | ● | ● |
軟皮筆記本 | ● | 2 | 9 |
圓規(guī) | 3.5 | 1 | ● |
合計 | 8 | 28 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
是
的角平分線,以
為圓心,
為半徑作⊙
.
()求證:
是⊙
的切線.
()已知
交⊙
于點
,延長
交⊙
于點
,
,求
的值.
()在(
)的條件下,設⊙
的半徑為
,求
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小麗和小明上山游玩,小麗乘纜車,小明步行,兩人相約在山頂的纜車終點會合.已知小明行走到纜車終點的路程是纜車到山頂的線路長的2倍,小麗在小明出發(fā)后1小時才乘上纜車,纜車的平均速度為190m/min.設小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個行走過程中y與x的函數關系.
(1)小明行走的總路程是m,他途中休息了min.
(2)①當60≤x≤90時,求y與x的函數關系式;②當小麗到達纜車終點時,小明離纜車終點的路程是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請直接寫出線段AF,AE的數量關系;
(2)①將△CED繞點C逆時針旋轉,當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數量關系,并證明你的結論;
②若AB=2,CE=2,在圖②的基礎上將△CED繞點C繼續(xù)逆時針旋轉一周的過程中,當平行四邊形ABFD為菱形時,直接寫出線段AE的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com