【題目】如圖,四邊形ABCD是邊長為1的正方形,且DE=,△ABF是△ADE的旋轉圖形
(1)旋轉中心是哪一點?
(2)旋轉了多少度?
(3)AF的長度是多少?
(4)如果連結EF,那么△AEF是怎樣的三角形?
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.點P從點A出發,以2cm/s的速度沿邊AB向終點B運動.過點P作PQ⊥AB交折線ACB于點Q,D為PQ中點,以DQ為邊向右側作正方形DEFQ.設正方形DEFQ與△ABC重疊部分圖形的面積是y(cm2),點P的運動時間為x(s).
(1)當點Q在邊AC上時,正方形DEFQ的邊長為 cm(用含x的代數式表示);
(2)當點P不與點B重合時,求點F落在邊BC上時x的值;
(3)當0<x<2時,求y關于x的函數解析式;
(4)直接寫出邊BC的中點落在正方形DEFQ內部時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道:有些代數恒等式可以利用平面圖形的面積來表示,如:
就可以用如圖所示的面積關系來說明。
(1)請根據如圖寫出代數恒等式,并根據所寫恒等式計算:
(2)若求
的值;
(3)現有如圖中的彩色卡片:A型、B型、C型,把這些卡片不重疊不留縫隙地貼在棱長為的100個立方體表面進行裝飾,A型、B型、C型卡片的單價分別為0.7元/張、0.5元/張、0.4元/張,共需多少費用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點A為切點,BP與⊙O交于點C,點D是AP的中點,連結CD.
(1)求證:CD是⊙O的切線;
(2)若AB=2,∠P=30°,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀與理解:
折紙,常常能為證明一個命題提供思路和方法.例如,在△ABC中,AB>AC(如圖),怎樣證明∠C>∠B呢?
把AC沿∠A的角平分線AD翻折,因為AB>AC,所以點C落在AB上的點處,即
,據以上操作,易證明
≌
,所以
,又因為
>∠B,所以∠C>∠B.
感悟與應用:
(1)如圖(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,試判斷AC和AD、BC之間的數量關系,并說明理由;
(2)如圖(b),在四邊形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求證:∠B+∠D=180°;
② 求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數量關系?并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在7×7網格中,每個小正方形的邊長都為1.
(1)若點A(1,3),C(2,1), ①建立適當的平面直角坐標系;②點B的坐標為( , );
(2)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人用如圖所示的兩個分格均勻的轉盤做游戲:分別轉動兩個轉盤,若轉盤停止后,指針指向一個數字(若指針恰好停在分格線上,則重轉一次),用所指的兩個數字作乘積,如果積大于10,那么甲獲勝;如果積不大于10,那么乙獲勝.清你解決下列問題:
(l)利用樹狀圖(或列表)的方法表示游戲所有可能出現的結果;
(2)求甲、乙兩人獲勝的概率,并說明游戲是否公平.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有A、B兩個港口,水由A流向B,水流的速度是4千米/小時,甲、乙兩船同時由A順流駛向B,各自不停地在A、B之間往返航行,甲在靜水中的速度是28千米/小時,乙在靜水中的速度是20千米/小時.
設甲行駛的時間為t小時,甲船距B港口的距離為S1千米,乙船距B港口的距離為S2千米,如圖為S1(千米)和t(小時)函數關系的部分圖象.
(1)A、B兩港口距離是_____千米.
(2)在圖中畫出乙船從出發到第一次返回A港口這段時間內,S2(千米)和t(小時)的函數關系的圖象.
(3)求甲、乙兩船第二次(不算開始時甲、乙在A處的那一次)相遇點M位于A、B港口的什么位置?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com