日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
閱讀下列材料:如圖(1)在四邊形ABCD中,若AB=AD,BC=CD,則把這樣的四邊形稱之為“箏形”.
解答問題:如圖(2)將正方形ABCD繞著點B逆時針旋轉一定角度后,得到正方形GBEF,邊AD與EF相交于點H.
請你判斷四邊形ABEH是否是“箏形”,說明你的理由.
分析:可以判斷ABEH是箏形,通過證△HAB≌△HEB,得到HA=HE.
解答:解:四邊形ABEH是“箏形”.理由如下:
如圖2,連接BH.
根據旋轉的性質得到:∠A=∠E=90°,AB=BE,
∴在Rt△HAB與Rt△HEB中,
AB=EB
HB=HB
,
∴Rt△HAB≌Rt△HEB(HL),
∴HA=HB,
∴四邊形ABEH是“箏形”.
點評:本題考查了全等三角形的判定與性質,正方形的性質.解題的關鍵是根據題意得到“箏形”的定義.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
如圖表示我國農村居民的小康生活水平實現程度地處西部某貧困縣,農村人口約50萬,2002年農村小康生活的綜合實現程度才達到68%,即沒有達到小康程度的人口約為(1-68%)×50萬=16萬.
解答下列問題:
(1)假設該縣計劃在2002年的基礎上,到2004年底,使沒有達到小康程度的16萬農村人口降至10.24萬,那么平均每年降低的百分率是多少?
(2)如果該計劃實現,2004年底該縣農村小康進程接近圖中哪一年的水平?(假設該縣人口2年內不變)精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

精英家教網閱讀下列材料:
如圖1,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2外公切線,A、B為切點,
求證:AC⊥BC
證明:過點C作⊙O1和⊙O2的內公切線交AB于D,
∵DA、DC是⊙O1的切線
∴DA=DC.精英家教網
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根據上述材料,解答下列問題:
(1)在以上的證明過程中使用了哪些定理?請寫出兩個定理的名稱或內容;
(2)以AB所在直線為x軸,過點C且垂直于AB的直線為y軸建立直角坐標系(如圖2),已知A、B兩點的坐標為(-4,0),(1,0),求經過A、B、C三點的拋物線y=ax2+bx+c的函數解析式;
(3)根據(2)中所確定的拋物線,試判斷這條拋物線的頂點是否落在兩圓的連心O1O2上,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在正方形ABCD中,E是AD的中點,F是BA延長線上的一點,AF=
12
AB
.(1)求證△ABE≌△ADF;
精英家教網
(2)閱讀下列材料:
如圖2,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;
精英家教網
如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
精英家教網
如圖4,以點A為中心把△ABC旋轉180°,可以變到△AED的位置.
精英家教網
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
(3)回答下列問題:
①在圖1中,可以通過平行移動、翻折、旋轉中的哪一種方法使△ABE變到△ADF的位置,
答:
 

②指出圖1中,線段BE與DF之間的關系.
答:
 

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2013•樂山)閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
AM
MB
=
m
n
,則有結論:MN=
bm+an
m+n

請根據以上結論,解答下列問題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過EF上一點P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點P1,交AB于點P2,交AC于點P3
(1)若點P為線段EF的中點.求證:PP1=PP2+PP3;
(2)若點P為線段EF上的任意位置時,試探究PP1,PP2,PP3的數量關系,并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
如圖1,在四邊形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求證:CD=AB.
小剛是這樣思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求證及特殊角度數可聯想到構造特殊三角形.即過點A作AE⊥AB交BC的延長線于點E,則AB=AE,∠E=∠D.
在△ADC與△CEA中,
∠D=∠E
∠DAC=∠ECA=75°
AC=CA

∴△ADC≌△CEA,
得CD=AE=AB.
請你參考小剛同學思考問題的方法,解決下面問題:

如圖2,在四邊形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,請問:CD與AB是否相等?若相等,請你給出證明;若不相等,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 这里都是精品 | 国产精品九九九 | 亚洲国产欧美一区二区三区久久 | 伊人免费视频 | 亚洲精品成人av | 午夜精品网站 | www.夜夜操.com| 91小视频 | 久久久精品影院 | 久久精品二区 | 国产成人涩涩涩视频在线观看 | 成人精品视频99在线观看免费 | 97成人在线| 国产高潮好爽受不了了夜色 | 国产乱精品一区二区三区视频了 | 国产特级毛片 | 久久久久久久影院 | 精品久久久久久久 | 狠狠躁夜夜躁人人爽天天天天97 | 午夜日韩 | 狠狠狠干 | 国产精品99久久免费观看 | 日本高清视频网站 | 黄色免费网站 | 亚洲专区在线播放 | 国产一区二区影院 | 日本1区2区 | 国产区久久 | 久久99深爱久久99精品 | 国产情侣一区二区三区 | 亚洲天堂字幕 | 日韩三级在线观看 | 在线欧美日韩 | 精品欧美一区二区三区久久久 | 99久久综合狠狠综合久久 | 黄色片免费在线 | 秋霞影院午夜丰满少妇在线视频 | 探花在线| 久久久久国产一级毛片 | 成人在线免费 | 久久精品亚洲a |