日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

18、如圖,在對Rt△OAB依次進行位似、軸對稱和平移變換后得到△O′A′B′.
(1)在坐標(biāo)紙上畫出這幾次變換相應(yīng)的圖形;
(2)設(shè)P(x,y)為△OAB邊上任一點,依次寫出這幾次變換后點P對應(yīng)點的坐標(biāo).
分析:分別根據(jù)位似變換、軸對稱、平移的作圖方法作圖即可;根據(jù)這些變換的特點可求出變換后點P對應(yīng)點的坐標(biāo).
解答:解:
(1)如圖.(4分)
(2)設(shè)坐標(biāo)紙中方格邊長為單位1,則P(x,y)以O(shè)為位似中心放大為原來的2倍(2x,2y),經(jīng)y軸翻折得到(-2x,2y),再向右平移4個單位得到(-2x+4,2y),再向上平移5個單位得到(-2x+4,2y+5)(8分)
說明:如果以其它點為位似中心進行變換,或兩次平移合并,或未設(shè)單位長,或(2)中直接寫出各項變換對應(yīng)點的坐標(biāo),只要正確就相應(yīng)賦分.
點評:本題主要考查:位似變換、軸對稱、平移.此題隱含著逆向思維.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當(dāng)點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第35章《圓(二)》中考題集(17):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當(dāng)點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第28章《圓》中考題集(50):28.2 與圓有關(guān)的位置關(guān)系(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當(dāng)點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《直線與圓、圓與圓的位置關(guān)系》中考題集(16):3.1 直線與圓的位置關(guān)系(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當(dāng)點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(44):3.5 直線和圓的位置關(guān)系(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當(dāng)點P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产激情的老师在线播放 | 久久精品一区二区三区四区毛片 | 欧美中文在线观看 | 欧美激情一区二区三级高清视频 | 国产精品久久久久久久一区探花 | 久久99国产一区二区三区 | 成人免费在线观看视频 | 久久久久久久99精品免费观看 | 成人欧美一区二区三区黑人孕妇 | 欧日韩在线观看视频 | 久久久av | 中文字幕一区在线观看视频 | 十环传奇在线观看完整免费高清 | 色综合天天天天做夜夜夜夜做 | 欧美精品在线免费观看 | julia一区二区三区中文字幕 | 亚洲三级在线播放 | 免费看国产片在线观看 | www久 | 国产精品视频一区二区三区 | 男女靠逼视频免费观看 | 中文字幕亚洲在线观看 | 最新国产中文字幕 | 日韩在线一区二区三区 | 久久久久国产精品免费免费搜索 | 亚洲午夜精品 | 国产男女视频在线观看 | yiren22综合网成人 | 91资源在线观看 | 国产精品一区二区三区在线 | 久久伊人草 | 麻豆freexxxx性91精品 | 一区二区三区四区日韩 | 99国内精品久久久久久久 | 精品一区二区免费 | 国产探花在线精品一区二区 | 国产小视频在线免费观看 | 毛片搜索 | 国产一二三区在线观看 | 成人免费视屏 | 亚洲成人天堂 |