日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
當x=1.5, y=時,

 (1)x2+y2=___________; (用小數表示)

(2)(x+y)2=___________.

答案:2.5;4
解析:

解: ∵ x=1.5, y=

    ∴  x2+y2

      

      =2.5

        (x+y)2

      =

      =22

      =4


練習冊系列答案
相關習題

科目:初中數學 來源:初中數學 三點一測叢書 八年級數學 下 (江蘇版課標本) 江蘇版 題型:044

函數的奇偶性

  一般地,如果函數y=f(x)對于自變量取值范圍內的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函數;如果函數y=f(x)對于自變量取值范圍內的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函數.

  例如:f(x)=x3+x.

  當x取任意實數,

  f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)

  即f(-x)=-f(x)

  所以f(x)=x3+x為奇函數.

  又如:f(x)=|x|,

  當x取任意實數時,f(-x)=|-x|=|x|=f(x),

  即f(-x)=f(x)

  所以f(x)為偶函數.

問題:(1)下列函數:

①y=x4;②y=x2+1;③y=;④y=;⑤y=x+

所有奇函數是________,所有偶函數是________(只填序號);

(2)請你再分別寫出一個奇函數,一個偶函數.

查看答案和解析>>

科目:初中數學 來源: 題型:

數學課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

證明:在AB上截取EAMC,連結EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當∠AnMnNn    °時,結論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:在△ABC中AB=AC,點D為BC邊的中點,點F是AB邊上一點,點E在線段DF的延長線上,∠BAE=∠BDF,點M在線段DF上,∠ABE=∠DBM.
【小題1】如圖1,當∠ABC=45°時,求證:AE=MD;

【小題2】如圖2,當∠ABC=60°時,則線段AE、MD之間的數量關系為:                。

【小題3】在(2)的條件下延長BM到P,使MP=BM,連接CP,若AB=7,AE=,求tan∠ACP的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

數學課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AM=MN.
(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.
證明:在AB上截取EA=MC,連結EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請你猜想:當∠AnMnNn   °時,結論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業升學考試(山東泰安卷)數學解析版 題型:解答題

數學課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

證明:在AB上截取EAMC,連結EM,得△AEM

∵∠1=180°-∠AMB-∠AMN2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當∠AnMnNn    °時,結論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜精品久久久久99蜜 | 欧美精品一区二区在线观看 | av一级在线 | 久久国产亚洲 | 欧美激情在线播放 | 国产精品久久久久久久久久 | 日韩成人在线看 | 午夜视频在线观看网址 | 91麻豆精品国产91久久久资源速度 | 在线精品一区二区 | 日韩在线中文字幕 | 国产极品美女高潮无套av个 | 亚洲免费资源 | 国产精品久久久久免费视频 | 亚洲精品91 | 毛片a在线 | 91视频免费看 | 亚洲欧美日韩另类精品一区二区三区 | 亚洲污视频 | 欧美在线网站 | 成人免费视频网站在线观看 | 久久一 | 欧美日韩一区在线 | 高清有码| 日韩久久一区 | 中文字幕av一区二区三区 | 亚洲国产欧美日韩 | 亚洲欧美中文字幕 | 欧美综合一区二区 | 手机看片麻豆 | 国产精品三级久久久久久电影 | 真人一级毛片 | 亚洲三级视频 | 日韩在线中文字幕 | 2024自拍偷拍 | 成人综合在线观看 | 少妇一区二区三区毛片免费下载看 | 一区二区中文 | 91在线视频福利 | 成人一区视频 | 亚洲欧洲一区二区三区 |