日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2006•泰州)將一矩形紙片OABC放在直角坐標系中,O為原點,C在x軸上,OA=6,OC=10.
(1)如圖(1),在OA上取一點E,將△EOC沿EC折疊,使O點落在AB邊上的D點,求E點的坐標;
(2)如圖(2),在OA、OC邊上選取適當的點E′、F,將△E′OF沿E′F折疊,使O點落在AB邊上的D′點,過D′作D′G∥A′O交E′F于T點,交OC′于G點,求證:TG=A′E′.
(3)在(2)的條件下,設T(x,y)①探求:y與x之間的函數關系式.②指出變量x的取值范圍.
(4)如圖(3),如果將矩形OABC變為平行四邊形OA“B“C“,使O C“=10,O C“邊上的高等于6,其它條件均不變,探求:這時T(x,y)的坐標y與x之間是否仍然滿足(3)中所得的函數關系,若滿足,請說明理由;若不滿足,寫出你認為正確的函數關系式.
【答案】分析:(1)根據折疊的性質可得出DE=OE,OC=CD,如果設出E點的坐標,可用E的縱坐標表示出AE,ED的長,可根據相似三角形ADE和CDB得出的關于AE、BC、AD、BD的比例關系式求出E點的縱坐標.也就求出了E的坐標;
(2)本題可通過證D′T=OE′來求出,如果連接OD′,那么E′F必垂直平分OD′,如果設OD′與E′F的交點為P,那么OP=D′P,△OE′P≌△D′PT,可得D′T=OE′.由此可證得A′E′=TG.
(3)可先根據T的坐標表示出A′D′,A′E′,然后可在直角三角形A′D′E′中表示出D′E′,而D′E′又可用A′O-A′E′表示.可以此來求出y,x的函數關系式.
在(1)中給出的情況就是x的最小值的狀況,可根據AD的長求出x的最小值,當x取最大值時,E′F平分∠OAB,即E′與A′重合,四邊形E′OGD為正方形,可據此求出此時x的值.有了x的最大和最小取值即可求出x的取值范圍.
(4)(2)(3)得出的結論均成立,證法同上.
解答:解:(1)方法1:設OE=m或E(0,m),則AE=6-m,OE=m,CD=10
由勾股定理得BD=8,則AD=2.
在△ADE中由勾股定理得(6-m)2+22=m2
解得m=
∴點E的坐標為(0,
方法2:設OE=m或E(0,m),則AE=6-m,OE=m,CD=10.
由勾股定理得BD=8,則AD=2.
由∠EDC=∠EAD=90°,得∠AED=∠CDB,△ADE∽△BCD.

解得m=
∴點E的坐標為(0,).

(2)連接OD′交E'F于P,由折疊可知E'F垂直平分OD'即OP=PD',
由OE'∥D'G,從而得出OE'=D'T.
從而AE'=TG.

(3)①
連接OT,OD′,交FE′于點P,
由(2)可得OT=D'T,
由勾股定理可得x2+y2=(6-y)2
得y=-x2+3.
②結合(1)可得AD'=OG=2時,x最小,從而x≥2,
當E'F恰好平分∠OAB時,AD'最大即x最大,
此時G點與F點重合,四邊形AOFD'為正方形,
故x最大為6.
從而x≤6,2≤x≤6.

(4)y與x之間仍然滿足(3)中所得的函數關系式.
理由:連接OT'仍然可得OT'=D''T',
由勾股定理可得,
即x2+y2=(6-y)2
從而(3)中所得的函數關系式仍然成立.
點評:本題考查了二次函數的應用、圖形翻折變換、三角形全等、勾股定理、平行四邊形和矩形的性質等知識點,綜合性強,考查學生數形結合的數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(05)(解析版) 題型:解答題

(2006•泰州)如圖,現有一橫截面是一拋物線的水渠.一次,水渠管理員將一根長1.5m的標桿一端放在水渠底部的A點,另一端露出水面并靠在水渠邊緣的B點,發現標桿有1m浸沒在水中,露出水面部分的標桿與水面成30°的夾角(標桿與拋物線的橫截面在同一平面內).
(1)以水面所在直線為x軸,建立如圖所示的直角坐標系,求該水渠橫截面拋物線的解析式(結果保留根號);
(2)在(1)的條件下,求當水面再上升0.3m時的水面寬約為多少(取2.2,結果精確到0.1m).

查看答案和解析>>

科目:初中數學 來源:2006年江蘇省泰州市中考數學試卷(課標卷)(解析版) 題型:解答題

(2006•泰州)如圖,現有一橫截面是一拋物線的水渠.一次,水渠管理員將一根長1.5m的標桿一端放在水渠底部的A點,另一端露出水面并靠在水渠邊緣的B點,發現標桿有1m浸沒在水中,露出水面部分的標桿與水面成30°的夾角(標桿與拋物線的橫截面在同一平面內).
(1)以水面所在直線為x軸,建立如圖所示的直角坐標系,求該水渠橫截面拋物線的解析式(結果保留根號);
(2)在(1)的條件下,求當水面再上升0.3m時的水面寬約為多少(取2.2,結果精確到0.1m).

查看答案和解析>>

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2006•泰州)將一矩形紙片OABC放在直角坐標系中,O為原點,C在x軸上,OA=6,OC=10.
(1)如圖(1),在OA上取一點E,將△EOC沿EC折疊,使O點落在AB邊上的D點,求E點的坐標;
(2)如圖(2),在OA、OC邊上選取適當的點E′、F,將△E′OF沿E′F折疊,使O點落在AB邊上的D′點,過D′作D′G∥A′O交E′F于T點,交OC′于G點,求證:TG=A′E′.
(3)在(2)的條件下,設T(x,y)①探求:y與x之間的函數關系式.②指出變量x的取值范圍.
(4)如圖(3),如果將矩形OABC變為平行四邊形OA“B“C“,使O C“=10,O C“邊上的高等于6,其它條件均不變,探求:這時T(x,y)的坐標y與x之間是否仍然滿足(3)中所得的函數關系,若滿足,請說明理由;若不滿足,寫出你認為正確的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2006年江蘇省泰州市中考數學試卷(課標卷)(解析版) 題型:解答題

(2006•泰州)為了配合“八榮八恥”宣傳教育,針對闖紅燈的現象時有發生的實際情況,八年級某班開展一次題為“紅燈與綠燈”的課題學習活動,它們將全班學生分成8個小組,其中第①~⑥組分別負責早、中、晚三個時段闖紅燈違章現象的調查,第⑦小組負責查閱有關紅綠燈的交通法規,第⑧小組負責收集有關的交通標志.數據匯總如下:

回答下列問題:
(1)請你寫出2條交通法規:①紅燈停、綠燈行.②______.
(2)畫出2枚交通標志并說明標志的含義.

標志含義:______標志含義:______.
(3)早晨、中午、晚上三個時段每分鐘車流量的極差是______,這三個時段的車流總量的中位數是______.
(4)觀察表中的數據及條形統計圖,寫出你發現的一個現象并分析其產生的原因.
(5)通過分析寫一條合理化建議.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色综合久久88 | 国产综合一区二区 | 日本在线视频一区 | 精品国产一区二区三区久久久蜜月 | 亚洲电影一区二区 | 国产成人在线播放 | 岛国在线免费 | 玖玖操| 国产极品一区 | 精品国产18久久久久久二百 | 国产在线一区二区三区 | 欧美一区二区免费 | 国产精品对白一区二区三区 | 99精品福利视频 | 国产色婷婷 | 日韩在线欧美 | 欧美一区二 | 亚洲国产高清在线 | 99精品在线免费 | 永久黄网站色视频免费观看w | 久久精品日产第一区二区三区 | 精品国产一区二区三区成人影院 | 国产伦精品一区二区三区高清 | 国产精品精品视频一区二区三区 | 久久一级 | 亚洲精品成人在线 | 91欧美在线 | 国产传媒日韩欧美 | 亚洲天堂久久 | 日韩一区二区三区在线 | 99久久精品国产一区二区三区 | 黄色a视频 | 亚洲人人爽 | 色婷婷香蕉在线一区二区 | 中文字幕在线播放第一页 | 欧美日韩精品一区二区三区蜜桃 | 亚洲成av人片一区二区梦乃 | 99热首页| 国产精品成人在线 | 涩涩片影院 | 中文字幕乱码一区二区三区 |