【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
科目:初中數學 來源: 題型:
【題目】將拋物線向右平移2個單位,得到拋物線
的圖象
是拋物線
對稱軸上的一個動點,直線
平行于y軸,分別與直線
、拋物線
交于點A、
若
是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則
______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】書法是我國的文化瑰寶,研習書法能培養高雅的品格.某校為加強書法教學,了解學生現有的書寫能力,隨機抽取了部分學生進行測試,測試結果分為優秀、良好、及格、不及格四個等級,分別用A,B,C,D表示,并將測試結果繪制成如圖兩幅不完整的統計圖.
請根據統計圖中的信息解答以下問題:
(1)本次抽取的學生人數是 ,扇形統計圖中A所對應扇形圓心角的度數是 .
(2)把條形統計圖補充完整.
(3)若該學校共有2800人,等級達到優秀的人數大約有多少?
(4)A等級的4名學生中有3名女生1名男生,現在需要從這4人中隨機抽取2人參加電視臺舉辦的“中學生書法比賽”,請用列表或畫樹狀圖的方法,求被抽取的2人恰好是1名男生1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,已知AD=4,AB=3,點P是直線AD上的一點,PE⊥AC,PF⊥BD,E,F分別是垂足,AG⊥BD與點G,
(1) 如圖①點P在線段AD上,求PE+PF的值;
(2) 如圖②點P在直線AD上,求PEPF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場要經營一種新上市的文具,進價為20元,試營銷階段發現:當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價
(元)之間的函數關系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數;
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商品的進價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設每件商品的售價上漲x元(x為整數),每周的銷售利潤為y元.
(1)求y與x的函數關系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經過A,B兩點,點P在線段OA上,從點O出發,向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發,向點B以個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.
(1)求拋物線的解析式;
(2)問:當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標;
(4)設拋物線頂點為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點的三角形與以O,B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com