日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,已知拋物線y=-
2
3
x2+
4
3
x+2的圖象與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.點M從O點出發,以每秒1個單位長度的速度向B運動,過M作x軸的垂線,交拋物線于點P,交BC于Q.
(1)求點B和點C的坐標;
(2)設當點M運動了x(秒)時,四邊形OBPC的面積為S,求S與x的函數關系式,并指出自變量x的取值范圍;
(3)在線段BC上是否存在點Q,使得△DBQ成為以BQ為一腰的等腰三角形?若存在精英家教網,求出點Q的坐標,若不存在,說明理由.
分析:(1)已知拋物線解析式,令y=0,x=0,可求B、C兩點坐標;
(2)設點P的坐標為P(x,y),由S四邊形OBPC=S△OPC+S△OPB可列出S與x的函數關系式,由于B(3,0),∴0≤x≤3;
(3)∵BQ為一腰,有兩種可能:①BQ=DQ,②BQ=BD=2,都可由相似三角形的對應邊的比,求出OM、MQ的長.
解答:精英家教網解:(1)把x=0代入y=-
2
3
x2+
4
3
x+2得點C的坐標為C(0,2)
把y=0代入y=-
2
3
x2+
4
3
x+2得點B的坐標為B(3,0)

(2)連接OP,設點P的坐標為P(x,y)
S四邊形OBPC=S△OPC+S△OPB=
1
2
×2×x+
1
2
×3×y
=x+
3
2
-
2
3
x2+
4
3
x+2

∵點M運動到B點上停止,
∴0≤x≤3
∴S=-(x-
3
2
2+
21
4
(0≤x≤3)

(3)存在.
BC=
OB2+OC2
=
13

①若BQ=DQ
∵BQ=DQ,BD=2
∴BM=1
∴OM=3-1=2
tan∠OBC=
QM
BM
=
OC
OB
=
2
3

∴QM=
2
3

所以Q的坐標為Q(2,
2
3
).
②若BQ=BD=2
∵△BQM∽△BCO,
BQ
BC
=
QM
CO
=
BM
BO

2
13
=
QM
2

∴QM=
4
13
13

BQ
BC
=
BM
OB

2
13
=
BM
3

∴BM=
6
13
13

∴OM=3-
6
13
13

所以Q的坐標為Q(3-
6
13
13
,
4
13
13
).
綜上所述,Q的坐標為Q(2,
2
3
)或Q(3-
6
13
13
,
4
13
13
).
點評:本題考查了二次函數解析式的運用,坐標系里面積表示方法,及尋找特殊三角形的條件問題,涉及分類討論和相似三角形的運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)精英家教網、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發,以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 天天干天天操天天爽 | 91在线精品一区二区 | 99热少妇| 亚洲精品久久久久久一区二区 | 国产精品91网站 | 亚洲精品欧美视频 | 亚洲精品在线视频 | 国产精品第一国产精品 | 精品一区二区国产 | 国产精品久久久久久久久久免费看 | 国产精品一区亚洲二区日本三区 | 欧美日韩中字 | 欧美色影院 | 欧美电影一区 | 激情婷婷 | 欧美激情一区二区 | 99这里只有精品视频 | www.亚洲一区 | 国偷自产视频一区二区久 | 国产精品伦理 | www.白白色| 日韩欧美视频在线 | 日本久久伊人 | 日本天天操 | 欧美视频一区二区 | 日本不卡一 | 久久久一区二区三区捆绑sm调教 | 91精品国产综合久久婷婷香蕉 | 久久伊人国产 | 午夜三区 | 一区二区三区四区在线 | 性做久久久久久久免费看 | 色视频网站在线观看 | 日本精品区| 成人综合社区 | 一级a毛片 | 精品美女一区 | 亚洲成人动漫在线观看 | 欧美视频免费在线观看 | 日韩亚洲视频 | 精品国产一区二区三区性色av |