【題目】已知A=a2-2ab+b2,B=a2+2ab+b2.
(1)求A+B;
(2)求(A+B);
(3)如果2A-3B+C=0,那么C的表達式是什么?
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A(0,a),B(b,12-b),C(2a-3,0),0<a<b<12,若OB平分∠AOC,且AB=BC,則a+b的值為( )
A. 9或12B. 9或11C. 10或11D. 10或12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某童裝網店批發商批發一種童裝,平均每天可售出件,每件盈利
元.經調查,如果每件童裝降價
元,那么平均每天就可多售出
件.
(1)設每件童裝降價元,那么每天可售出多少件童裝?每件童裝的利潤是多少元?(用含
的代數式表示)
(2)為了迎接“六一”兒童節,商家決定降價促銷、盡快減少庫存,又想保證平均每天盈利元,求每件童裝應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一副直角三角尺的直角頂點C疊放在一起.
(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,則∠DCE= ;
(2)猜想∠ACB與∠DCE的大小有何特殊關系,并說明理由;
(3)若保持三角尺BCE(其中∠B=45°)不動,三角尺ACD的CD邊與CB邊重合,然后將三角尺ACD(其中∠D=30°)繞點C按逆時針方向任意轉動一個角度∠BCD.
設∠BCD=α(0°<α<90°)
①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能說明理由.
②當這兩塊三角尺各有一條邊互相垂直時直接寫出α的所有可能值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是某學校草場一角,在長為b米,寬為a米的長方形場地中間,有并排兩個大小一樣的籃球場,兩個籃球場中間以及籃球場與長方形場地邊沿的距離都為c米.
(1)用代數式表示這兩個籃球場的占地面積.
(2)當a=30,b=40,c=3時,計算出一個籃球場的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由幾個相同的邊長為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數字表示該位置的小立方塊的個數.
(1)請在下面方格紙中分別畫出這個向何體的主視圖和左視圖.
(2)根據三視圖;這個組合幾何體的表面積為 _________ 個平方單位.(包括底面積)
(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個數可以改變(總數目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個平方單位.(包括底面積)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①所示的是一個正方體的表面展開圖,將對應的正方體從如圖②所示的位置依次翻到第1格、第2格、第3格,這時正方體朝上的一面上的字是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是( )
A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知O是AB上的一點,從O點引出射線OC、OE、OD,其中OE平分∠BOC.
(1)如圖1,若∠COD是直角,∠DOE=15°,求∠AOE的度數;
(2)如圖1,若∠AOC=∠BOD,∠DOE=15°,求∠AOE的度數;
(3)將圖1中的∠COD (∠COD仍是直角)繞頂點O順時針旋轉至圖2的位置,若∠AOC=, ∠DOE=
,請猜想
與
之間存在什么樣的數量關系,寫出你的結論,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com