日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關系是       ,BQ的長是       dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=,tan37°=)

拓展 在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.

延伸 在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.

(1)CQ∥BE, 3。
(2)
(3)37°。
拓展:y=-x+3.   37°≤α≤53°。
延伸:溢出液體可以達到4dm3

解析分析:探究:(1)根據水面與水平面平行可以得到CQ與BE平行,利用勾股定理即可求得BD的長:

(2)液體正好是一個以△BCQ是底面的直棱柱,據此即可求得液體的體積;。
(3)根據液體體積不變,據此即可列方程求解。
拓展:分容器向左旋轉和容器向右旋轉兩種情況討論。
延伸:當α=60°時,如圖6所示,設FN∥EB,GB′∥EB,過點G作GH⊥BB′于點H,此時容器內液體形成兩層液面,液體的形狀分別是以Rt△NFM和直角梯形MBB′G為底面的直棱柱,求得棱柱的體積,即可求得溢出的水的體積,據此即可作出判斷。
探究:(1)CQ∥BE, 3。
(2)
(3)在Rt△BCQ中,,∴α=∠BCQ=37°。
拓展:當容器向左旋轉時,如圖3,0°≤α≤37°,
∵液體體積不變,∴
∴y=-x+3.
當容器向右旋轉時,如圖,同理可得:

當液面恰好到達容器口沿,即點Q與點B′重合時,如圖,

由BB′=4,且,得PB=3,
∴由tan∠PB′B=,得∠PB′B=37°。∴α=∠B′PB=53°。
此時37°≤α≤53°。
延伸:當α=60°時,如圖所示,設FN∥EB,GB′∥EB,過點G作GH⊥BB′于點H。

在Rt△B′GH中,GH=MB=2,∠GB′B=30°,
∴HB′=2
∴MG=BH=4-2<MN。
此時容器內液體形成兩層液面,液體的形狀分別是以Rt△NFM和直角梯形MBB′G為底面的直棱柱。


∴溢出液體可以達到4dm3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•河北)一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關系是
CQ∥BE
CQ∥BE
,BQ的長是
3
3
dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=
3
4
,tan37°=
3
4


拓展:在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC=x,BQ=y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.
延伸:在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續向右緩慢旋轉,當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

科目:初中數學 來源:2013年初中畢業升學考試(河北卷)數學(解析版) 題型:解答題

一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).

探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如

圖2所示.解決問題:

(1)CQ與BE的位置關系是       ,BQ的長是       dm;

(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積SBCQ×高AB)

(3)求α的度數.(注:sin49°=cos41°=,tan37°=)

拓展 在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.

延伸 在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm3.

 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關系是______,BQ的長是______dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=數學公式,tan37°=數學公式

拓展:在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC=x,BQ=y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.
延伸:在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續向右緩慢旋轉,當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

科目:初中數學 來源:2013年河北省中考數學試卷(解析版) 題型:解答題

一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
解決問題:
(1)CQ與BE的位置關系是______,BQ的長是______dm;
(2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=,tan37°=

拓展:在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC=x,BQ=y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.
延伸:在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續向右緩慢旋轉,當α=60°時,通過計算,判斷溢出容器的液體能否達到4dm3

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本亚洲欧美 | 91一级| 精品一区二区三区免费 | 中文字幕100页 | 国产免费久久 | 娇喘呻吟趴在雪白肉体耸动图 | 国产欧美综合一区二区三区 | 国产精品99 | a毛片毛片av永久免费 | 久久久久久午夜 | 中文字幕日韩一区二区 | 亚洲天堂一区 | 欧美视频在线观看免费 | 成人天堂噜噜噜 | 国内自拍偷拍视频 | 黄色av免费 | 再深点灬舒服灬太大了添少妇视频 | 很黄很污的网站 | 国产噜噜噜噜噜久久久久久久久 | 午夜视频 | 日韩中文字幕三区 | 6080yy精品一区二区三区 | 国产成人精品在线 | 91豆花视频| 激情91| 欧美精品在线观看免费 | 精品一二三区视频 | 国产精自产拍久久久久久 | 天天干人人 | 日操视频| 日本a在线 | 欧美日批 | 欧美日韩中文在线观看 | 日韩在线播放欧美字幕 | 日产精品久久 | 青春草在线观看 | 亚洲 中文 欧美 日韩 在线观看 | 欧美日韩国产综合视频 | 狠狠操夜夜操 | 91资源在线 | 黄色小视频免费观看 |