【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉90°后得Rt△FOE,將線段EF繞點E逆時針旋轉90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是 .
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2+x的圖象,如圖所示
(1)根據方程的根與函數圖象之間的關系,將方程x2+x=1的根在圖上近似地表示出來(描點),并觀察圖象,寫出方程x2+x=1的根(精確到0.1).
(2)在同一直角坐標系中畫出一次函數y= x+
的圖象,觀察圖象寫出自變量x取值在什么范圍時,一次函數的值小于二次函數的值.
(3)如圖,點P是坐標平面上的一點,并在網格的格點上,請選擇一種適當的平移方法,使平移后二次函數圖象的頂點落在P點上,寫出平移后二次函數圖象的函數表達式,并判斷點P是否在函數y= x+
的圖象上,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點,觀察圖象可知:①當x=﹣3或1時,y1=y2;②當﹣3<x<0或x>1時,y1>y2;即通過觀察函數的圖象,可以得到不等式ax+b>
的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
艾斯柯同學類比以上知識的研究方法,用函數與方程的思想對不等式的解法進行了探究,請將他下面的②③④補充完整:
①當x=0時,原不等式不成立:當x>0時,原不等式可以轉化為x2+4x﹣1> ;當x<0時,原不等式可以轉化為x2+4x﹣1<
.
②構造函數,畫出圖象
設y3=x2+4x﹣1,y4= 在同一坐標系中分別畫出這兩個函數的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中直接畫出拋物線y3=x2+4x﹣1(可不列表);
③利用圖象,確定交點橫坐標
觀察所畫兩個函數的圖象,猜想并通過代入函數解析式驗證可知:滿足y3=y4的所有x的值為
④借助圖象,寫出解集
結合(1)的討論結果,觀察兩個函數的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數y=ax+b與反比例函數y= 在同一平面直角坐標系內的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+2的圖象與反比例函數y= 的圖象交于點P,P在第一象限,PA⊥x軸于點A,PB⊥y軸于點B,一次函數的圖象分別交x軸、y軸于點C、D,且S△PBD=4,
=
.
(1)求一次函數與反比例函數的解析式;
(2)根據圖象直接寫出當x>0時,一次函數的值大于反比例函數值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在長方形ABCD中,AB=2,BC=1,動點P從點B出發,沿路線B→C→D做勻速運動,那么△ABP的面積S與點P運動的路程x之間的函數圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面上,Rt△ABC與直徑為CE的半圓O,如圖1擺放,∠B=90°,BC=m,AC=2CE=n,半圓O交BC邊于點D,將半圓O繞點C按逆時針方向旋轉,點D隨半圓O旋轉,且∠ECD=∠ACB,旋轉角記為α(0°≤α≤180°).
(1)①當α=0°時,連接DE,則∠CDE=°,CD=;②當α=180°時, = .
(2)試判斷:旋轉過程中 的大小有無變化?請僅就圖2的情形給出證明.
(3)若m=4,n=5,當α=∠ACB時,線段BD= .
(4)若m=4 ,n=6,當半圓O旋轉至與△ABC的邊相切時,線段BD= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是直角邊長為2a的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點且與半圓O1相切,則圖中陰影部分的面積是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com