日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知:如圖,點O2是⊙O1上一點,⊙O2與⊙O1相交于A、D兩點,BC⊥AD,垂足為D,分別交⊙O1、⊙O2于B、C兩點,延長DO2交⊙O2于E,交BA延長線于F,BO2交AD于G,連接AD.
(1)求證:∠BGD=∠C;
(2)若∠DO2C=45°,求證:AD=AF;
(3)若BF=6CD,且線段BD、BF的長是關于x的方程x2-(4m+2)x+4m2+8=0的兩個實數根,求BD、BF的長.

【答案】分析:(1)運用直徑所對圓周角=90°,等角的余角相等,對頂角相等證明;
(2)只需證明∠F=∠ADF即可.由A,B,D,O2四點共圓知∠ABD=∠DO2C=45°,∠BAD=45°,△DCO2中,O2C=O2D,頂角已知,求出底角∠O2DC的度數,∠ADF=90°-∠O2DC,∠F=∠O2DC-∠ABD,可知∠F=∠ABD;
(3)由已知條件,可以知道,首先應求出BD與CD的關系,這樣BD與BF都用CD表示,再由根與系數的關系,求出m的值,回代方程,求出BD,BF的值,根據根的判別式進行檢驗.
解答:(1)證明:∵BC⊥AD于D,
∴∠BDA=∠CDA=90°,
∴AB、AC分別為⊙O1、⊙O2的直徑,
∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°,
∴∠BGD=∠C;

(2)證明:∵∠DO2C=45°,
∴∠ABD=45°,
∵O2D=O2C,
∴∠C=∠O2DC=(180-∠DO2C)=67.5°,
∴∠4=22.5°,
∵∠O2DC=∠ABD+∠F,
∴∠F=∠4=22.5°,
∴AD=AF;

(3)解:∵BF=6CD,
∴設CD=k,則BF=6k,
連接AE,則AE⊥AD,
∴AE∥BC,
∴△FAE∽△FBD,

∴AE•BF=BD•AF,
又∵在△AO2E和△DO2C中,AO=DO2,∠AOE=∠DOC,O2E=O2C,
∴△AO2E≌△DO2C,
∴AE=CD=k,
∴6k2=BD•AF=(BC-CD)(BF-AB),
∵∠BO2A=90°,O2A=O2C,
∴BC=AB,
∴6k2=(BC-k)(6k-BC),
∴BC2-7kBC+12k2=0,
解得:BC=3k,或BC=4k,
當BC=3k時,BD=2k,
∵BD、BF的長是關于x的方程x2-(4m+2)x+4m2+8=0的兩個實數根,
∴由根與系數的關系知:BD+BF=2k+6k=8k=4m+2,BD•BF=12k2=4m2+8,
∴k=+
把BD=2k代入方程x2-(4m+2)x+4m2+8=0可得,4m2-12m+29=0,
∵△=(-12)2-4×4×29=-320<0,此方程無實數根,
∴BC=3k舍去,
當BC=4k時,BD=3k,
∴3k+6k=4m+218k2=4m2+8,
整理,得:m2-8m+16=0,解得:m1=m2=4,
∴原方程可化為x2-18x+72=0,
解得:x1=6,x2=12,
∴BD=6,BF=12.
點評:(1)在圓中證明兩個角相等時,通常將它們等量轉化;
(2)證明兩邊相等時,如果兩邊在同一個三角形中,則證明它們所對的角相等;
(3)本問中有四個未知量,BF,CD,BD,m,而只有三個方程BF=6CD,根與系數的關系可以列出兩個,所以要根據條件先求出BD與CD的關系,這樣三個未知數,三個方程可以求出結果.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,點O2是⊙O1上一點,⊙O2與⊙O1相交于A、D兩點,BC⊥AD,垂足為D,分別交精英家教網⊙O1、⊙O2于B、C兩點,延長DO2交⊙O2于E,交BA延長線于F,BO2交AD于G,連接AD.
(1)求證:∠BGD=∠C;
(2)若∠DO2C=45°,求證:AD=AF;
(3)若BF=6CD,且線段BD、BF的長是關于x的方程x2-(4m+2)x+4m2+8=0的兩個實數根,求BD、BF的長.

查看答案和解析>>

科目:初中數學 來源:第3章《圓》中考題集(22):3.1 圓(解析版) 題型:解答題

已知:如圖,點O2是⊙O1上一點,⊙O2與⊙O1相交于A、D兩點,BC⊥AD,垂足為D,分別交⊙O1、⊙O2于B、C兩點,延長DO2交⊙O2于E,交BA延長線于F,BO2交AD于G,連接AD.
(1)求證:∠BGD=∠C;
(2)若∠DO2C=45°,求證:AD=AF;
(3)若BF=6CD,且線段BD、BF的長是關于x的方程x2-(4m+2)x+4m2+8=0的兩個實數根,求BD、BF的長.

查看答案和解析>>

科目:初中數學 來源:第3章《圓》中考題集(23):3.3 圓周角(解析版) 題型:解答題

已知:如圖,點O2是⊙O1上一點,⊙O2與⊙O1相交于A、D兩點,BC⊥AD,垂足為D,分別交⊙O1、⊙O2于B、C兩點,延長DO2交⊙O2于E,交BA延長線于F,BO2交AD于G,連接AD.
(1)求證:∠BGD=∠C;
(2)若∠DO2C=45°,求證:AD=AF;
(3)若BF=6CD,且線段BD、BF的長是關于x的方程x2-(4m+2)x+4m2+8=0的兩個實數根,求BD、BF的長.

查看答案和解析>>

科目:初中數學 來源:2005年全國中考數學試題匯編《圓》(13)(解析版) 題型:解答題

(2005•哈爾濱)已知:如圖,點O2是⊙O1上一點,⊙O2與⊙O1相交于A、D兩點,BC⊥AD,垂足為D,分別交⊙O1、⊙O2于B、C兩點,延長DO2交⊙O2于E,交BA延長線于F,BO2交AD于G,連接AD.
(1)求證:∠BGD=∠C;
(2)若∠DO2C=45°,求證:AD=AF;
(3)若BF=6CD,且線段BD、BF的長是關于x的方程x2-(4m+2)x+4m2+8=0的兩個實數根,求BD、BF的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99免费在线视频 | 亚洲精品一区中文字幕乱码 | 日本一区视频在线观看 | 中文字幕一区在线 | 日韩精品一区二区三区在线播放 | 日韩美女亚洲99久久二区 | 精品一区二区三区免费毛片爱 | 欧日韩在线观看 | 精品一区二区三区四区五区 | 久久人人爽人人爽人人片av不 | 玖玖色资源 | 欧美在线一区二区三区 | 9999亚洲| 国产无遮挡呻吟娇喘视频 | 精品国产31久久久久久 | 成人一级片视频 | 婷婷亚洲综合 | 国产精品久久久久久久久免费 | 久久影音先锋 | 日韩精品视频免费专区在线播放 | 国产精品99视频 | 久久精品国产99 | 国产精品久久久精品 | 国产日日操 | 日韩欧美精品在线观看 | 91精品一区二区三区久久久久久 | 99精品视频在线观看 | 天堂va蜜桃一区二区三区 | 狠狠亚洲| 欧美日韩精品久久久久 | 九九热精品视频 | 日韩国产欧美视频 | 91福利在线播放 | 国产免费一区二区三区 | 亚洲精品一区二三区不卡 | 91亚洲日本aⅴ精品一区二区 | 高清久久 | 国产成人宗合 | 国产精品观看 | 国产美女高潮一区二区三区 | 亚洲精品日韩综合观看成人91 |