【題目】如圖所示,在△ABC中,已知AD是角平分線,∠B=66°,∠C=54°.
(1)求∠ADB的度數;
(2)若DE⊥AC于點E,求∠ADE的度數.
【答案】(1)∠ADBD=84°.
(2)∠ADE=60°.
【解析】試題分析:(1)已知∠B,∠C的度數,可求出三角形ABC中 BAC的度數,AD又是
BAC的角平分線,可以求得
BAD的值,從而在三角形ABD中即可求得∠ADB的度數。(2)由(1)可求得
CAD=
BAD,若DE⊥AC,則在直角三角形中可以求得∠ADE的度數。
試題解析:(1)∵在△ABC中,∠B=66°,∠C=54°,
∴∠BAC=180°-∠B-∠C=60°.
∵AD是∠BAC的平分線,
∴∠BAD=∠BAC=30°.
在△ABD中,∠B=66°,∠BAD=30°,
∴∠ADB=180°-∠B-∠BAD=84°.
(2)∵∠CAD=∠BAC=30°,DE⊥AC,
∴∠ADE=90°-∠EAD=60°.
科目:初中數學 來源: 題型:
【題目】國務院辦公廳2015年3月16日發布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統計圖表:
獲獎等次 | 頻數 | 頻率 |
一等獎 | 10 | 0.05 |
二等獎 | 20 | 0.10 |
三等獎 | 30 | b |
優勝獎 | a | 0.30 |
鼓勵獎 | 80 | 0.40 |
請根據所給信息,解答下列問題:
(1)a= ,b= ,且補全頻數分布直方圖;
(2)若用扇形統計圖來描述獲獎分布情況,問獲得優勝獎對應的扇形圓心角的度數是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某次試驗數據整理過程中,某個事件發生的頻率情況如表所示.
試驗次數 | 10 | 50 | 100 | 200 | 500 | 1000 | 2000 |
事件發生的 | 0.245 | 0.248 | 0.251 | 0.253 | 0.249 | 0.252 | 0.251 |
估計這個事件發生的概率是(精確到0.01).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】郵遞員騎車從郵局O出發,先向西騎行2km到達A村,繼續向西騎行3km到達B村,然后向東騎行8km,到達C村,最后回到郵局.
(1)以郵局為原點,以向東方向為正方向,用1cm表示2km,畫出數軸,并在該數軸上表示出A、B、C三個村莊的位置;
(2)C村距離A村有多遠?
(3)郵遞員共騎行了多少km?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,網格線的交點叫格點,格點是
的邊
上的一點(請利用網格作圖,保留作圖痕跡).
(1)過點畫
的垂線,交
于點
;
(2)線段 的長度是點O到PC的距離;
(3)的理由是 ;
(4)過點C畫的平行線;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市某中學決定在學生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學生對四種項目的喜歡情況,隨機調查了該校m名學生最喜歡的一種項目(每名學生必選且只能選擇四種活動項目的一種),并將調查結果繪制成如下的不完整的統計圖表:
學生最喜歡的活動項目的人數統計表
項目 | 學生數(名) | 百分比 |
丟沙包 | 20 | 10% |
打籃球 | 60 | p% |
跳大繩 | n | 40% |
踢毽球 | 40 | 20% |
根據圖表中提供的信息,解答下列問題:
(1)m= ,n= ,p= ;
(2)請根據以上信息直接補全條形統計圖;
(3)根據抽樣調查結果,請你估計該校2000名學生中有多少名學生最喜歡跳大繩.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com