【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:
①AD∥BC;
②∠ACB=2∠ADB;
③∠ADC=90°﹣∠ABD;
④BD平分∠ADC;
⑤∠BDC=∠BAC.
其中正確的結論有( )
A.2個 B.3個 C.4個 D.5個
【答案】C
【解析】
試題分析:根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠EAC=∠ABC+∠ACB=2∠ABC,根據角平分線的定義可得∠EAC=2∠EAD,然后求出∠EAD=∠ABC,再根據同位角相等,兩直線平行可得AD∥BC,判斷出①正確;
根據兩直線平行,內錯角相等可得∠ADB=∠CBD,再根據角平分線的定義可得∠ABC=2∠CBD,從而得到∠ACB=2∠ADB,判斷出②正確;
根據兩直線平行,內錯角相等可得∠ADC=∠DCF,再根據三角形的一個外角等于與它不相鄰的兩個內角的和和角平分線的定義整理可得∠ADC=90°﹣∠ABD,判斷出③正確;
根據三角形的外角性質與角平分線的定義表示出∠DCF,然后整理得到∠BDC=∠BAC,判斷出⑤正確,再根據兩直線平行,內錯角相等可得∠CBD=∠ADB,∠ABC與∠BAC不一定相等,所以∠ADB與∠BDC不一定相等,判斷出④錯誤.
解:由三角形的外角性質得,∠EAC=∠ABC+∠ACB=2∠ABC,
∵AD是∠EAC的平分線,
∴∠EAC=2∠EAD,
∴∠EAD=∠ABC,
∴AD∥BC,故①正確,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABC=2∠CBD,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,故②正確;
∵AD∥BC,
∴∠ADC=∠DCF,
∵CD是∠ACF的平分線,
∴∠ADC=∠ACF=
(∠ABC+∠BAC)=
(180°﹣∠ACB)=
(180°﹣∠ABC)=90°﹣∠ABD,故③正確;
由三角形的外角性質得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,
∵BD平分∠ABC,CD平分∠ACF,
∴∠DBC=∠ABC,∠DCF=
∠ACF,
∴∠BDC+∠DBC=(∠ABC+∠BAC)=
∠ABC+
∠BAC=∠DBC+
∠BAC,
∴∠BDC=∠BAC,故⑤正確;
∵AD∥BC,
∴∠CBD=∠ADB,
∵∠ABC與∠BAC不一定相等,
∴∠ADB與∠BDC不一定相等,
∴BD平分∠ADC不一定成立,故④錯誤;
綜上所述,結論正確的是①②③⑤共4個.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標.
(2)若把△ABC向上平移2個單位,再向左平移1個單位得到△A′B′C′,寫出 A′、B′、C′的坐標,并在圖中畫出平移后圖形.
(3)求出三角形ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文化用品商店用2000元購進一批學生書包,面市后發現供不應求,商店又購進第二批同樣的書包,所購數量是第一批購進數量的3倍,但單價貴了4元,結果第二批用了6300元。
(1)求第一批購進書包的單價是多少元?
(2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形MNPQ中,動點R從點N出發,沿著N→P→Q→M方向運動至點M處停止,設點R運動的路程為x,△MNR的面積為y,如果y關于x的函數圖象如圖2所示,則下列說法不正確的是( )
A.當x=2時,y=5
B.矩形MNPQ的面積是20
C.當x=6時,y=10
D.當y=時,x=10
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com