【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E為OC上動點(與點O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
【答案】(1)見解析;(2)見解析;(3).
【解析】分析:(1)通過證明△AOH ≌ △BOE得到結論;
(2)易證△AOH∽△BGH得,由∠OHG =∠AHB可得△OHG∽△AHB,從而∠AGO=∠ABO=45°,從而可得結論;
(3)易證△ABG ∽△BFG得,故AG·GF=BG 2 =5.再證明△AGO ∽△CGF.可得GO·CG =AG·GF=5.故S△OGC =
CG·GO=
.
詳解:(1)∵四邊形ABCD是正方形,
∴OA=OB,∠AOB=∠BOE=90°
∵AF⊥BE,
∴∠GAE+∠AEG=∠OBE+∠AEG=90°.
∴∠ GAE =∠OBE .
∴△AOH ≌ △BOE.
∴AH=BE .
(2)∵∠AOH=∠BGH=90°, ∠AHO=∠BHG,
∴△AOH∽△BGH.
∴.
∴.
∵∠OHG =∠AHB.
∴△OHG∽△AHB.
∴∠AGO=∠ABO=45°,即∠AGO的度數為定值.
(3)∵∠ABC=90°,AF⊥BE,
∴∠BAG=∠FBG,∠AGB=∠BGF=90°,
∴△ABG ∽△BFG.
∴,
∴AG·GF=BG 2 =5.
∵△AHB∽△OHG,
∴∠BAH=∠GOH=∠GBF.
∵∠AOB=∠BGF=90°,
∴∠AOG=∠GFC.
∵∠AGO=45°,CG⊥GO,
∴∠AGO=∠FGC=45°.
∴△AGO ∽△CGF.
∴,
∴GO·CG =AG·GF=5.
∴S△OGC =CG·GO=
.
科目:初中數學 來源: 題型:
【題目】如圖所示,某公司有三個住宅區可看作一點,A,B,C各區分別住有職工30人、15人、10人,且這三個住宅區在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設一個停靠點,為使所有的人步行到停靠點的路程之和最小,那么該停靠點的位置應設在( )
A. 點A B. 點B
C. A,B之間 D. B,C之間
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某景區售票處規定:非節假日的票價打a折售票;節假日根據團隊人數x(人)實行分段售票:若10,則按原展價購買;若x>10,則其中10人按原票價購買,超過部分的按原那價打b折購買.某旅行社帶團到該景區游覽,設在非節假日的購票款為y1元,在節假日的購票款為y2元,y1、y2與x之間的函數圖象如圖所示.
(1)觀察圖象可知:a=________,b=________;
(2)當x>10時,求y2與x之間的函數表達式;
(3)該旅行社在今年5月1目帶甲團與5月10日(非節假日)帶乙國到該景區游覽,兩團合計50人,共付門票款3120元,已知甲團人數超過10人,求甲團人數與乙團人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=12cm,BC=15cm,∠B=90°,DC=5cm.點P從點A向點D以lcm/s的速度運動,到D點停止,點Q從點C向B點以2cm/s的速度運動,到B點停止,點P,Q同時出發,設運動時間為t(s).
(1)用含t的代數式表示:AP= ;BQ= .
(2)當t為何值時,四邊形PDCQ是平行四邊形?
(3)當t為何值時,△QCD是直角三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場欲購進果汁飲料和碳酸飲料共60箱,兩種飲料每箱的進價和售價如下表所示。設購進果汁飲料x箱(x為正整數),且所購進的兩種飲料能全部賣出,獲得的總利潤為W元(注:總利潤=總售價-總進價)。
(1)設商場購進碳酸飲料y箱,直接寫出y與x的函數解析式;
(2)求總利潤w關于x的函數解析式;
(3)如果購進兩種飲料的總費用不超過2100元,那么該商場如何進貨才能獲利最多?并求出最大利潤。
飲料 | 果汁飲料 | 碳酸飲料 |
進價(元/箱) | 40 | 25 |
售價(元/箱) | 52 | 32 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:矩形ABCD中,AB=10,AD=8,點E是BC邊上一個動點,將△ABE沿AE折疊得到△AB′E。
(1)如圖(1),點G和點H分別是AD和AB′的中點,若點B′在邊DC上。
①求GH的長;
②求證:△AGH≌△B′CE;
(2)如圖(2),若點F是AE的中點,連接B′F,B′F∥AD,交DC于I。
①求證:四邊形BEB′F是菱形;
②求B′F的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,正方形ABCD中,點E、F、G分別是邊AD、AB、BC的中點,連接EP、FG.
(1)如圖1,直接寫出EF與FG的關系____________;
(2)如圖2,若點P為BC延長線上一動點,連接FP,將線段FP以點F為旋轉中心,逆時針旋轉90°,得到線段FH,連接EH.
①求證:△FFE≌△PFG;②直接寫出EF、EH、BP三者之間的關系;
(3)如圖3,若點P為CB延長線上的一動點,連接FP,按照(2)中的做法,在圖(3)中補全圖形,并直接寫出EF、EH、BP三者之間的關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com